Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013 (2013), Article ID 657951, 7 pages
http://dx.doi.org/10.1155/2013/657951
Research Article

The Effect of Tribomechanical Micronization and Activation on Rheological, Thermophysical, and Some Physical Properties of Tapioca Starch

1Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
2High School of Food Technology, Gjure Prejca 2, Zagreb, Croatia
3Forensic Science Centre “Ivan Vučetić”, Ilica 110, Zagreb, Croatia

Received 30 November 2012; Revised 4 February 2013; Accepted 5 February 2013

Academic Editor: R. J. Linhardt

Copyright © 2013 Zoran Herceg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Golachowski, “Application of starch and its preparationin food industry,” Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, vol. 328, pp. 117–124, 1998 (Polish). View at Google Scholar
  2. P. Tomasik, “Modified starches and their application,” Polish Journal of Food and Nutrition Sciences, vol. 54, no. 4, pp. 16–18, 2000 (Polish). View at Google Scholar
  3. T. Funami, Y. Kataoka, T. Omoto, Y. Goto, I. Asai, and K. Nishinari, “Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch,” Food Hydrocolloids, vol. 19, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. L. M. Che, D. Li, L. J. Wang, X. D. Chen, and Z. H. Mao, “Micronization and hydrophobic modification of cassava starch,” International Journal of Food Properties, vol. 10, no. 3, pp. 527–536, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. M. Che, D. Li, L. J. Wang, N. Özkan, X. D. Chen, and Z. H. Mao, “Effect of high-pressure homogenization on the structure of cassava starch,” International Journal of Food Properties, vol. 10, no. 4, pp. 911–922, 2007. View at Google Scholar
  6. Y. Liang, B. S. Zhang, L. S. Yang, and D. W. Gao, “Chemicalreactionativity of tapioca starch with non-cristallized granule state,” Journal of Zhengzhou Institute of Technology, vol. 25, pp. 9–13, 2004. View at Google Scholar
  7. T. Lelas, “Vorrichtung zum Micronisieren vom Materialien und neuartige Verwendungsmoglichkeiten derartig mikronisierter Materialien,” Patent PCT/ 1B99/00757, Geneve, Switzerland, 1998.
  8. V. Lelas, “Novel food processing technologies,” Dairy, vol. 56, pp. 311–330, 2006. View at Google Scholar
  9. Z. Herceg, V. Lelas, and M. Skreblin, “Influence of tribomechanical micronisation on the rheological properties of whey proteins,” Food Technology and Biotechnology, vol. 40, no. 2, pp. 145–156, 2002. View at Google Scholar · View at Scopus
  10. Z. Herceg, V. Lelas, and G. Krešić, “Influence of tribomechanical micronization on the physical and functional properties of whey proteins,” International Journal of Dairy Technology, vol. 58, no. 4, pp. 225–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Herceg, V. Batur, A. R. Jambrak, M. Badanjak, S. R. Brnčić, and V. Lalas, “Modification of rheological, thermophysical, textural and some physical properties of corn starch by tribomechanical treatment,” Carbohydrate Polymers, vol. 80, no. 4, pp. 1072–1077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. E. Ortega-Ojeda and A. C. Elliason, “Gelatinisation and retrogradation behaviour of some starch mixtures,” Starch, vol. 53, pp. 520–529, 2001. View at Google Scholar
  13. J. Babić, D. Šubarić, N. Nedić Tiban, and M. Kopjar, “The effect of lactose and whey powder on the gelatinization and retrogradation of tapioca starch,” in Proceedings of the 4th International Symposium on Food Rheology and Structure (ISFRS '06), P. Fischer and E. J. Windhab, Eds., pp. 707–708, Zürich, Švicarska, 2006.
  14. J. Babić, D. Šubarić, Đ. Ačkar, V. Piližota, M. Kopjar, and N. Nedić Tiban, “Effect of pectin and carrageenan on thermophysical and rheological properties of tapioca starch,” Czech Journal of Food Sciences, vol. 24, no. 6, pp. 275–282, 2006. View at Google Scholar
  15. D. Šubarić, J. Babić, Đ. Ačkar et al., “Effect of galactomannan hydrocolloids on gelatinization and retrogradation of tapioca and corn starch,” Croatian Journal of Food Science and Technology, vol. 3, no. 1, pp. 26–31, 2011. View at Google Scholar
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light By Small Particles, Wiley, New York, NY, USA, 1983.
  17. H. W. Leach, L. D. McCowen, and T. J. Schoch, “Structure of the starch granule. Swelling and solubility patterns of various starches,” Cereal Chemistry, vol. 36, pp. 534–544, 1959. View at Google Scholar
  18. C. Perera and R. Hoover, “Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches,” Food Chemistry, vol. 64, no. 3, pp. 361–375, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Hagenimana and X. Ding, “A comparative study on pasting and hydration properties of native rice starches and their mixtures,” Cereal Chemistry, vol. 82, no. 1, pp. 70–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Vidić, T. Vukušić, I. L. Herceg et al., “Influence od high intensity ultrasound on physical and textural properties of wheat starch,” Croatian Journal of Food Technology, Biotechnology, vol. 4, pp. 134–140, 2011. View at Google Scholar
  21. Z. Herceg, S. Mededovic Thagard, V. Batur, and A. Režek Jambrak, “Effect of tribomechanical micronisation and activation treatment on textural and thermophysical properties of wheat and potato starch gels,” Food technology and Biotechnology. In press.
  22. K. S. Sandhu, M. Kaur, N. Singh, and S. T. Lim, “A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties,” Food Science and Technology, vol. 41, no. 6, pp. 1000–1010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. V. V. Boldyrev, “Mechanochemistry and sonochemistry,” Ultrasonics, vol. 2, no. 2, pp. S143–S145, 1995. View at Google Scholar · View at Scopus
  24. Z. Q. Huang, J. P. Lu, X. H. Li, and Z. F. Tong, “Effect of mechanical activation on physico-chemical properties and structure of cassava starch,” Carbohydrate Polymers, vol. 68, no. 1, pp. 128–135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Krešić, V. Lelas, A. Režek Jambrak, Z. Herceg, and S. Rimac Brnčić, “Influence of novel food processing technologies on the rheological and thermo-physical properties of whey proteins,” Journal of Food Engineering, vol. 87, pp. 64–73, 2008. View at Google Scholar
  26. N. Singh, K. S. Sandhu, and M. Kaur, “Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars,” Journal of Food Engineering, vol. 63, no. 4, pp. 441–449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Singh, L. Kaur, and O. J. McCarthy, “Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review,” Food Hydrocolloids, vol. 21, no. 1, pp. 1–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. E. Hodge and E. M. Osman, “Carbohydrates,” in Food Chemistry, O. R. Fennema, Ed., Marcel Dekker, New York, NY, USA, 1996. View at Google Scholar