International Journal of Chemical Engineering
 Journal metrics
Acceptance rate21%
Submission to final decision88 days
Acceptance to publication41 days
CiteScore1.070
Impact Factor-
 Submit

Indexing news

International Journal of Chemical Engineering has recently been accepted into Science Citation Index Expanded and will receive its first Impact Factor in 2020.

Go to Table of Contents

 Journal profile

International Journal of Chemical Engineering publishes research focused on technologies for the production, processing, transportation and use of chemicals on an industrial scale.

 Editor spotlight

International Journal of Chemical Engineering maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

CO2 Utilization Process Simulation for Enhancing Production of Dimethyl Ether (DME)

Increase in the world energy demand also increases the concentration of CO2 in the atmosphere, which contributes to global warming and ocean acidification. This study proposed the simulation process to utilize CO2 released from the acid gas removal unit in one of gas processing plants in Indonesia to enhance the production of dimethyl ether (DME) through unreacted gas recycle that can be beneficial in reducing CO2 emission to the atmosphere. Simulation was developed in Unisim R390.1 using Peng–Robinson–Stryjek–Vera (PRSV) as a fluid package. Simulation was validated by several studies conducted by many researchers and giving satisfactory results especially in terms of productivity, conversion, and selectivity as a function of reactor temperatures in the indirect and the direct DME synthesis processes. Simulation results show that the DME production was enhanced by around 49.6% and 65.1% for indirect and direct processes, respectively, at a recycling rate of 7 MMSCFD. Compressor is required to increase the unreacted gas pressure to the desired pressure in the methanol reactor or dual methanol-DME reactor in both processes. Specific power consumption (SPC) was used as a tested parameter for the effectiveness of recycling unreacted gas. Based on the simulation, the direct DME synthesis process is superior over the indirect process in terms of DME and methanol productions, SPCs, and system energy efficiencies.

Research Article

Photocatalytic Degradation of Methylene Blue from Aqueous Medium onto Perlite-Based Geopolymer

In this work, geopolymer synthesized with perlite and an alkaline activator medium was evaluated as a new adsorbent and photocatalyst for degradation of methylene blue (MB) dye from an aqueous medium. The functional group, the structure, and the morphology of the raw and the synthesized materials were characterized using FT-IR, XRD, and SEM analysis. The degradation of MB in the contaminated solution was examined using the spectrophotometric technique. Several analysis methods revealed the formation of the aluminosilicate gel after the geopolymerization reaction. The kinetics data with UV and without UV irradiations were well fitted with the pseudo-second-order equation. The results indicated that the degradation efficiency of cationic dye by perlite-based geopolymer without and with UV was up to 88.94% and 97.87% in 4 hours, respectively. The degradation efficiencies of methylene blue are in the following order: perlite-based geopolymer under UV irradiations is greater than perlite-based geopolymer without UV irradiations that is larger than UV irradiations. The overall experimental results suggested that the new elaborated material with synergetic adsorption and photocatalytic activities has a great potential for the treatment of water contaminated by hazardous substances.

Research Article

Bioconversion of Agroindustrial Waste in the Production of Bioemulsifier by Stenotrophomonas maltophilia UCP 1601 and Application in Bioremediation Process

This study investigated the potential of the bacterium Stenotrophomonas maltophilia UCP 1601 to produce a new biomolecule with emulsifying properties by determining the hemolytic activity, obtaining a halo of 9 mm in blood agar. Fermentations were carried out in saline mineral medium supplemented with 10% waste soybean oil (WSO) and different concentrations of glucose, peptone, ZnCl2, and MgSO4, according to a 24 full-factorial design. The results showed that the best results were obtained in condition 6 (medium composed of 4% glucose, 1% peptone, 2.72% ZnCl2, and 2.46% MgSO4), with excellent high emulsification index of 82.74%, using burned motor oil. The emulsifying property of the biomolecule produced was confirmed by the emulsification index of 78.57, 54.07, and 58.62%, using soybean, corn, and diesel oils, respectively, and the stability at different values of pH, temperature, and NaCl concentrations. The yield of the produced bioemulsifier was 2.8 g/L, presenting an anionic character and polymeric nature (37.6% lipids, 28.2% proteins, and 14.7% carbohydrates), confirmed by FTIR. The new bioemulsifier demonstrated promising potential for bioremediation of hydrophobic contaminants in the environment, since it had the ability to reduce the viscosity of WSO and burned motor oil, as well as excellent dispersion capacity of the burned motor oil in water (69.94 cm2 of oil displacement area), and removing 71.7% of this petroleum derivative from sandy soil.

Research Article

Kinetic Models for Glucosamine Production by Acid Hydrolysis of Chitin in Five Mushrooms

In this paper, glucosamine was produced by acid hydrolysis of five mushrooms. The glucosamine yields were investigated, and the optimum conditions were obtained as follows: acid type, sulfuric acid; acid concentration, 6 M; ratio of raw material to acid volume, 1 : 10; hydrolysis temperature, 100°C; and time, 6 h. Under these conditions, the glucosamine conversion from chitin content reached up to 92%. The results of hydrolysis kinetics indicated that hydrolysis of five mushrooms to glucosamine followed zero-order kinetics. Moreover, the relatively low activation energy for hydrolysis of straw mushroom (18.31 kJ/mol) and the highest glucosamine yield (56.8132 ± 3.5748 mg/g DM, 0.9824 g/g chitin) indicated that hydrolysis of straw mushroom was energy-saving. Thus, sulfuric acid hydrolysis of straw mushroom for glucosamine production should be considered as an efficient process for the future industrial application. However, further study is needed for glucosamine purification.

Research Article

Dynamic Simulations of the Allam Cycle Power Plant Integrated with an Air Separation Unit

The unprecedented rise in carbon dioxide levels due to anthropogenic activities, if left unchecked, can lead to increased global warming. Electricity and heat generation account for around 25% of this greenhouse gas emission. The Allam cycle, a new oxy-fuel power cycle that emits virtually no CO2 and NOx, is inherently integrated with an air separation plant. In this study, Aspen Plus Dynamics was used to model the integrated Allam power plant/air separation unit (ASU) with a high degree of heat and work integration. The steady-state model developed agrees with the model developed by Net Power. Regulatory and advanced PID controllers were implemented for major equipment to meet operation objectives. Controller set point change, power ramp down, and natural gas composition change were studied, and key plant performance indicators were monitored and analyzed. This study shows that the Allam cycle power plant integrated with an ASU is controllable with the proposed control strategy under a tightly integrated configuration.

Research Article

Investigation of Heavy Metal Effects on the Anaerobic Co-Digestion Process of Waste Activated Sludge and Septic Tank Sludge

The effect of copper, zinc, chromium, and lead on the anaerobic co-digestion of waste activated sludge and septic tank sludge in Hanoi was studied in the fermentation tests by investigating the substrate degradation, biogas production, and process stability at the mesophilic fermentation. The tested heavy metals were in a range of concentrations between 19 and 80 ppm. After the anaerobic tests, the TS, VS, and COD removal efficiency was 4.12%, 9.01%, and 23.78% for the Cu(II) added sample. Similarly, the efficiencies of the Zn(II) sample were 1.71%, 13.87%, and 16.1% and Cr(VI) efficiencies were 15.28%, 6.6%, and 18.65%, while the TS, VS, and COD removal efficiency of the Pb(II) added sample was recorded at 16.1%, 17.66%, and 16.03% at the concentration of 80 ppm, respectively. Therefore, the biogas yield also decreased by 36.33%, 31.64%, 31.64%, and 30.60% for Cu(II), Zn(II), Cr(VI), and Pb(II) at the concentration of 80 ppm, compared to the raw sample, respectively. These results indicated that Cu(II) had more inhibiting effect on the anaerobic digestion of the sludge mixture than Zn(II), Cr(VI), and Pb(II). The relative toxicity of these heavy metals to the co-digestion process was as follows: Cu (the most toxic) > Zn > Cr > Pb (the least toxic). The anaerobic co-digestion process was inhibited at high heavy metal concentration, which resulted in decreased removal of organic substances and produced biogas.

International Journal of Chemical Engineering
 Journal metrics
Acceptance rate21%
Submission to final decision88 days
Acceptance to publication41 days
CiteScore1.070
Impact Factor-
 Submit