Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2008, Article ID 319392, 12 pages
http://dx.doi.org/10.1155/2008/319392
Research Article

Membrane-Based Separation of Phenol/Water Mixtures Using Ionically and Covalently Cross-Linked Ethylene-Methacrylic Acid Copolymers

Institute of Organic and Macromolecular Chemistry, Heinrich-Heine University of Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany

Received 18 April 2008; Revised 11 September 2008; Accepted 16 November 2008

Academic Editor: Toshinori Tsuru

Copyright © 2008 Alexander Mixa and Claudia Staudt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Strathmann, “Membrane separation—recent developments and new opportunities,” in Proceedings of the AIChE Annual Meeting, pp. 16–21, Los Angeles, Calif, USA, November 1997.
  2. R. L. Burns and W. J. Koros, “Defining the challenges for C3H6/C3H8 separation using polymeric membranes,” Journal of Membrane Science, vol. 211, no. 2, pp. 299–309, 2003. View at Publisher · View at Google Scholar
  3. D. Katarzynski, Auftrennung von Kohlenwasserstoffgemischen durch Polymermem-branen, Diplomarbeit, Universität Düsseldorf, Dusseldorf, Germany, 2004.
  4. D. Katarzynski and C. Staudt, “Permeation properties of different aromatic substances in multicomponent aromatic/aliphatic pervaporation experiments,” Desalination, vol. 200, no. 1–3, pp. 23–25, 2006. View at Publisher · View at Google Scholar
  5. R. Qi, C. Zhao, J. Li, Y. Wang, and S. Zhu, “Removal of thiophenes from n-octane/thiophene mixtures by pervaporation,” Journal of Membrane Science, vol. 269, no. 1-2, pp. 94–100, 2006. View at Publisher · View at Google Scholar
  6. R. Qi, Y. Wang, J. Li, C. Zhao, and S. Zhu, “Pervaporation separation of alkane/thiophene mixtures with PDMS membrane,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 545–552, 2006. View at Publisher · View at Google Scholar
  7. S. Das, A. K. Banthia, and B. Adhikari, “Pervaporation separation of aqueous chlorophenols by a novel polyurethane urea-poly (methyl methacrylate) interpenetrating network membrane,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 675–683, 2006. View at Publisher · View at Google Scholar
  8. J. Sawai, N. Ito, T. Minami, and M. Kikuchi, “Separation of low volatile organic compounds, phenol and aniline derivatives, from aqueous solution using silicone rubber membrane,” Journal of Membrane Science, vol. 252, no. 1-2, pp. 1–7, 2005. View at Publisher · View at Google Scholar
  9. A. Livingston, F. C. Ferreira, S. Han, A. Boam, and S. Zhang, “Membrane aromatic recovery system (MARS)—a new process for recovering phenols and aromatic amines from aqueous streams,” in Proceedings of the 12th Annual Meeting of the North American Membrane Society (NAMS '01), Lexington, Ky, USA, May 2001.
  10. F. C. Ferreira, S. Han, and A. G. Livingston, “Recovery of aniline from aqueous solution using the membrane aromatic recovery system (MARS),” Industrial & Engineering Chemistry Research, vol. 41, no. 11, pp. 2766–2774, 2002. View at Publisher · View at Google Scholar
  11. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porębski, W. Capała, and I. Ostrowska, “Removal of phenol from wastewater by different separation techniques,” Desalination, vol. 163, no. 1–3, pp. 287–296, 2004. View at Publisher · View at Google Scholar
  12. F. C. Ferreira, S. Han, A. Boam, S. Zhang, and A. G. Livingston, “Membrane aromatic recovery system (MARS): lab bench to industrial pilot scale,” Desalination, vol. 148, no. 1–3, pp. 267–273, 2002. View at Publisher · View at Google Scholar
  13. T. Uragami, H. Yamada, and T. Miyata, “Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology,” Journal of Membrane Science, vol. 187, no. 1-2, pp. 255–269, 2001. View at Publisher · View at Google Scholar
  14. W. Kujawski, A. Warszawski, W. Ratajczak, T. Porębski, W. Capała, and I. Ostrowska, “Application of pervaporation and adsorption to the phenol removal from wastewater,” Separation and Purification Technology, vol. 40, no. 2, pp. 123–132, 2004. View at Publisher · View at Google Scholar
  15. P. Wu, R. W. Field, R. England, and B. J. Brisdon, “A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams,” Journal of Membrane Science, vol. 190, no. 2, pp. 147–157, 2001. View at Publisher · View at Google Scholar
  16. S. Mielczarski, A. Noworyta, M. Kubasiewicz-Ponitka, and P. Suchecki, “Treatment of phenol wastewater using pervaporation,” Environment Protection Engineering, vol. 31, no. 3-4, pp. 23–31, 2005. View at Google Scholar
  17. M. Krea, D. Roizard, N. Moulai-Mostefa, and D. Sacco, “New copolyimide membranes with high siloxane content designed to remove polar organics from water by pervaporation,” Journal of Membrane Science, vol. 241, no. 1, pp. 55–64, 2004. View at Publisher · View at Google Scholar
  18. N. C. Pradhan, C. S. Sarkar, S. Niyogi, and B. Adhikari, “Separation of phenol-water mixture by membrane pervaporation using polyimide membranes,” Journal of Applied Polymer Science, vol. 83, no. 4, pp. 822–829, 2001. View at Publisher · View at Google Scholar
  19. F. Pithan and C. Staudt-Bickel, “Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation,” ChemPhysChem, vol. 4, no. 9, pp. 967–973, 2003. View at Publisher · View at Google Scholar · View at PubMed
  20. B. Sinha, U. K. Ghosh, N. C. Pradhan, and B. Adhikari, “Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes,” Journal of Applied Polymer Science, vol. 101, no. 3, pp. 1857–1865, 2006. View at Publisher · View at Google Scholar
  21. T. Gupta, N. C. Pradhan, and B. Adhikari, “Synthesis and performance of a novel polyurethaneurea as pervaporation membrane for the selective removal of phenol from industrial waste water,” Bulletin of Materials Science, vol. 25, no. 6, pp. 533–536, 2002. View at Publisher · View at Google Scholar
  22. J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, “The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes,” Industrial and Engineering Chemistry Research, vol. 41, no. 24, pp. 6139–6148, 2002. View at Publisher · View at Google Scholar
  23. S. Matsui and D. R. Paul, “Pervaporation separation of aromatic/aliphatic hydrocarbons by crosslinked poly(methyl acrylate-co-acrylic acid) membranes,” Journal of Membrane Science, vol. 195, no. 2, pp. 229–245, 2002. View at Publisher · View at Google Scholar
  24. A. Mixa, Polymermembranen bei der Entfernung organischer Schadstoffe in der Prozesswasseraufbereitung, Diplomarbeit, Universität Düsseldorf, Dusseldorf, Germany, 2005.
  25. J. Ren, C. Staudt-Bickel, and R. N. Lichtenthaler, “Separation of aromatics/aliphatics with crosslinked 6FDA-based copolymides,” Separation and Purification Technology, vol. 22-23, pp. 31–43, 2001. View at Publisher · View at Google Scholar
  26. M. Lamers, Steuerung der Trenneigenschaften polymerer Membranen durch supramolekulare Komplexbildung mit Cyclodextrinen, Dissertation, Universität Düsseldorf, Dusseldorf, Germany, 2007.
  27. T. Graham, “On the absorption and dialytic separation of gases by colloid septa,” Philosophical Magazine, vol. 32, no. 218, pp. 401–420, 1866. View at Google Scholar
  28. J. G. Wijmans and R. W. Baker, “The solution-diffusion model: a review,” Journal of Membrane Science, vol. 107, no. 1-2, pp. 1–21, 1995. View at Publisher · View at Google Scholar
  29. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, “Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” Journal of Polymer Science Part B, vol. 38, no. 3, pp. 415–434, 2000. View at Publisher · View at Google Scholar
  30. A. Fick, “On liquid diffusion,” Annalen der Physik, vol. 170, no. 1, pp. 59–86, 1855. View at Publisher · View at Google Scholar
  31. P. J. A. M. Kerkhof, “A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model,” The Chemical Engineering Journal and the Biochemical Engineering Journal, vol. 64, no. 3, pp. 319–343, 1996. View at Publisher · View at Google Scholar
  32. F. Fornasiero, J. M. Prausnitz, and C. J. Radke, “Multicomponent diffusion in highly asymmetric systems. An extended Maxwell-Stefan model for starkly different-sized, segment-accessible chain molecules,” Macromolecules, vol. 38, no. 4, pp. 1364–1370, 2005. View at Publisher · View at Google Scholar
  33. K.W. Böddeker, “Terminology in pervaporation,” Journal of Membrane Science, vol. 51, no. 3, pp. 259–272, 1990. View at Publisher · View at Google Scholar
  34. “The use of ethylene copolymers for the production of materials for material separation,” WO 2005/032710.
  35. T. Gruber, Untersuchungen zum Stofftransport in nichtporösen Polymermembranen, Dissertation, Universität Heidelberg, Heidelberg, Germany, 2000.
  36. A. Mixa, E-MAS: Effiziente polymeranaloge Modifizierung und Charakterisierung zur Anwendung in Membrantrennverfahren, Dissertation, Universität Düsseldorf, Dusseldorf, Germany, 2008.
  37. D. Katarzynski, Abtrennung von mehrkernigen Aromaten aus Aromaten/Aliphatenmischungen, Dissertation, Universität Düsseldorf, Dusseldorf, Germany, 2008.
  38. F. Pithan, Neuartige Copolyimidmembranen für die Pervaporation zum Einsatz in der Aromaten/Aliphaten-Trennung und der Prozesswasseraufbereitung, Dissertation, Universität Heidelberg, Heidelberg, Germany, 2003.
  39. E. S. Sanders, “Penetrant-induced plasticization and gas permeation in glassy polymers,” Journal of Membrane Science, vol. 37, no. 1, pp. 63–80, 1988. View at Publisher · View at Google Scholar
  40. A. Bos, I. G. M. Pünt, M. Wessling, and H. Strathmann, “Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations,” Separation and Purification Technology, vol. 14, no. 1–3, pp. 27–39, 1998. View at Publisher · View at Google Scholar
  41. C. Staudt-Bickel and W. J. Koros, “Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking,” Journal of Membrane Science, vol. 155, no. 1, pp. 145–154, 1999. View at Publisher · View at Google Scholar
  42. S. Hüning and K. H. Fritsch, “Azofarbstoffe durch oxydative Kupplung I,” Analytical Chemistry, vol. 609, pp. 143–160, 1957. View at Google Scholar
  43. E. Kamata and N. K. Zashi, “Color reactions of 3-methyl-2-benzothiazolone hydrazone with phenol derivatives I,” Chemical Abstracts, vol. 65, p. 16052a, 1966. View at Google Scholar
  44. M. Bennett, B. J. Brisdon, R. England, and R. W. Field, “Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams,” Journal of Membrane Science, vol. 137, no. 1-2, pp. 63–88, 1997. View at Publisher · View at Google Scholar
  45. M. R. Coleman and W. J. Koros, “Conditioning of fluorine-containing polyimides. 2. Effect of conditioning protocol at 8% volume dilation on gas-transport properties,” Macromolecules, vol. 32, no. 9, pp. 3106–3113, 1999. View at Publisher · View at Google Scholar
  46. G. J. Van Amerongen, “The permeability of different rubbers to gases and its relation to diffusivity and solubility,” Journal of Applied Physics, vol. 17, no. 11, pp. 972–985, 1946. View at Publisher · View at Google Scholar