Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2009, Article ID 569825, 12 pages
http://dx.doi.org/10.1155/2009/569825
Review Article

Dust Explosion Prevention and Mitigation, Status and Developments in Basic Knowledge and in Practical Application

1Department of Physics and Technology, University of Bergen, Allegaten 55, N-5007 Bergen, Norway
2Tyréns AB, 205 19 Malmö, Sweden

Received 23 January 2009; Accepted 23 March 2009

Academic Editor: Mostafa Barigou

Copyright © 2009 Rolf K. Eckhoff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. S. Lee, F. Zhang, and R. Knystautas, “Propagation mechanisms of combustion waves in dust-air mixtures,” Powder Technology, vol. 71, no. 2, pp. 153–162, 1992. View at Publisher · View at Google Scholar
  2. P. Wolanski, Deflagration, Detonation and Combustion of Dust Mixtures, American Institute of Aeronautics and Astronautics, New York, NY, USA, 1990.
  3. R. K. Eckhoff, “Generation, ignition, combustion and explosion of sprays and mists of flammable liquids in air. A Literature Survey,” Tech. Rep. CMI–91–A25014, Christian Michelsen Institute, Fantoft, Norway, 1991. View at Google Scholar
  4. R. K. Eckhoff, Dust Explosions in the Process Industries, Gulf Professional Publishing/Elsevier, Boston, Mass, USA, 3rd edition, 2003.
  5. S. M. Frolov, K. A. Avdeev, and F. S. Frolov, “Effect of transient heat transfer on ignition of solid particles,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 310–316, 2007. View at Publisher · View at Google Scholar
  6. A. V. Fedorov and A. V. Shulgin, “About stability of the ignition process of small solid particle,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 317–321, 2007. View at Publisher · View at Google Scholar
  7. A. E. Dahoe, K. Hanjalic, and B. Scarlett, “Determination of the laminar burning velocity and the Markstein length of powder-air flames,” Powder Technology, vol. 122, no. 2-3, pp. 222–238, 2002. View at Publisher · View at Google Scholar
  8. I. O. Moen, J. H. S. Lee, and B. H. Hjertager, “Pressure development due to turbulent flame propagation in large-scale methane—air explosions,” Combustion and Flame, vol. 47, pp. 31–52, 1982. View at Publisher · View at Google Scholar
  9. B. H. Hjertager, K. Fuhre, and M. Bjoerkhaug, “Gas explosion experiments in 1:33 and 1:5 scale offshore separator and compressor modules using stoichiometric homogeneous fuel/air mixtures,” Journal of Loss Prevention in the Process Industries, vol. 1, no. 4, pp. 197–220, 1988. View at Publisher · View at Google Scholar
  10. J. R. Bakke and K. van Wingerden, Guidance for Designing Offshore Modules Evolving from Gas Explosion Research, Society of Petroleum Engineers, Richardson, Tex, USA, 1992.
  11. F. Rzal-Rebière and B. Veyssière, “Propagation mechanisms of starch particles-air flames,” in Proceedings of the 6th International Colloquium on Dust Explosions, D. Xufan and P. Wolanski, Eds., pp. 186–200, Shenyang, China, August-September 1994.
  12. P. Mitgau, Einfluss der Turbulenzlänge und der Schwankungsgeschwindichkeit auf die Verbrennungs-geschwindigkeit von aerosolen, vol. 14, Max-Planck-Institut Für Strömungsforschung, Göttingen, Germany, 1996.
  13. P. Mitgau, H. Gg. Wagner, and R. Klemens, “Einfluss der Turbulenzlänge und der Schwankungsgeschwindichkeit auf die Flammengeschwindigkeit von Stäuben,” in Feuerungstechnik, Kaleidoskop aus aktueller Forschung und Entwicklung. Geburtstag, Festschrift an Prof. Wolfgang Leuckel zu seinem 65, pp. 17–45, Engler-Bunte-Institut, Bereich Feuerungs-technik, Universität Karlsruhe (TH), Geburtstag, Germany, 1997. View at Google Scholar
  14. K. L. Cashdollar and I. A. Zlochower, “Explosion temperatures and pressures of metals and other elemental dust clouds,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 337–348, 2007. View at Publisher · View at Google Scholar
  15. L. Kjäldman, “Numerical flow simulation of dust deflagrations,” Powder Technology, vol. 73, no. 1, p. 100, 1992. View at Publisher · View at Google Scholar
  16. M. Rose, P. Roth, S. M. Frolov, and M. G. Neuhaus, “Modelling of turbulent gas/particle combustion by a Lagrangian PDF method,” Combustion Science and Technology, vol. 149, no. 1, pp. 95–113, 1999. View at Publisher · View at Google Scholar
  17. N. N. Smirnov, V. F. Nikitin, and J. C. Legros, “Ignition and combustion of turbulized dust-air mixtures,” Combustion and Flame, vol. 123, no. 1-2, pp. 46–67, 2000. View at Publisher · View at Google Scholar
  18. U. Bielert and M. Sichel, “Numerische simulation von staubexplosionen in pneumatischen saug-flug-förderanlagen,” VDI-Berichte, no. 1601, pp. 449–472, 2001. View at Google Scholar
  19. K. Wörsdörfer, M. Sippel, J. Fuisting, and A. Kneer, “Möglichkeiten des Einsatzes numerischer Methoden im Explosionsschutz,” VDI-Berichte, no. 1601, pp. 437–447, 2001. View at Google Scholar
  20. V. P. Korobeinikov, I. V. Semenov, I. S. Menshov, R. Klemens, P. Wolanski, and P. Kosinski, “Modelling of flow and combustion behind shock waves propagating along dust layers in long ducts,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/113–Pr7/119, 2002. View at Google Scholar
  21. S. Zhong, A. Teodorczyk, X. Deng, and J. Dang, “Modeling and simulation of coal dust explosions,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/141–Pr7/147, 2002. View at Google Scholar
  22. P. Kosinski, R. Klemens, and P. Wolanski, “Potential of mathematical modelling in large-scale dust explosions,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/125–Pr7/132, 2002. View at Google Scholar
  23. A. Di Benedetto and P. Russo, “Thermo-kinetic modelling of dust explosions,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 303–309, 2007. View at Publisher · View at Google Scholar
  24. K. van Wingerden, B. J. Arntzen, and P. Kosiński, “Modelling of dust explosions,” VDI-Berichte, no. 1601, pp. 411–421, 2001. View at Google Scholar
  25. B. J. Arntzen, H. C. Salvesen, H. F. Nordhaug, I. E. Storvik, and O. R. Hansen, “CFD-modelling of oil mist and dust explosion experiments,” in Proceedings of the 4th International Seminar on Fire and Explosion Hazards, pp. 601–608, Londonderry, UK, September 2003.
  26. O. R. Hansen, T. Skjold, and B. J. Arntzen, “DESC—a CFD tool for dust explosions,” in Proceedings of the 3rd International ESMG Symposium on Process Safety and Industrial Explosion Protection, Nürnberg, Germany, March 2004.
  27. R. Siwek, K. Wingerden, O. R. van Hansen et al., “Dust explosion venting and suppression of conventional spray dryers,” in Proceedings of the 11th International Symposium Loss Prevention and Safety Promotion in the Process Industries, Praha, Czech Republic, May-June 2004.
  28. T. Skjold, B. J. Arntzen, O. R. van Hansen, I. Storvik, and R. K. Eckhoff, “Simulation of dust explosions in complex geometries with experimental input from standardized tests,” in Proceedings of the 5th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE '04), Krakow, Poland, October 2004.
  29. T. Skjold, B. J. Arntzen, O. R. van Hansen, O. J. Taraldset, I. Storvik, and R. K. Eckhoff, “Simulating dust explosions with the first version of DESC,” in Proceedings of the Symposium on Hazards XVIII: Process Safety—Shearing Best Practice, IChemE NW Branch Symposium, UMIST, Manchester, UK, November 2004.
  30. T. Skjold, B. J. Arntzen, O. R. van Hansen, O. J. Taraldset, I. E. Storvik, and R. K. Eckhoff, “Simulating dust explosions with the first version of DESC,” Process Safety and Environmental Protection, vol. 83, no. 2, pp. 151–160, 2005. View at Publisher · View at Google Scholar
  31. T. Skjold, B. J. Arntzen, O. R. van Hansen, I. E. Storvik, and R. K. Eckhoff, “Simulation of dust explosions in complex geometries with experimental input from standardized tests,” Journal of Loss Prevention in the Process Industries, vol. 19, no. 2-3, pp. 210–217, 2006. View at Publisher · View at Google Scholar
  32. T. Skjold, “Review of the DESC project,” in Proceedings of the 6th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (ISHPMIE '06), pp. 1–21, Halifax, Canada, August-September 2006, (Key-note paper).
  33. T. Skjold, R. K. Eckhoff, B. J. Arntzen et al., “Simplified modelling of explosion propagation by dust lifting in coal mines,” in Proceedings of the 5th Intenational Seminar on Fire and Explosion Hazards, The University of Edinburgh, Scotland, UK, April, 2007.
  34. T. Skjold, “Review of the DESC project,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 291–302, 2007. View at Publisher · View at Google Scholar
  35. R. Weber, “Preisgekrönte Abhandlung über die Ursachen von Explosionen und Bränden in Mühlen, sowie über die Sicherheitsmassregein zur Verhütung derselben,” Verhandlungen des Vereins zur Beförderung des Gewerbe- fleißes, pp. 83–103, 1878. View at Google Scholar
  36. F. Hauert, A. Vogl, and S. Radandt, “Measurement of turbulence and dust concentration in silos and vessels,” in Proceedings of the 6th International Colloquium on Dust Explosions, D. Xufan and P. Wolanski, Eds., pp. 71–80, Shenyang, China, August-September 1994.
  37. P. Kosinski, R. Klemens, P. Wolanski, V. P. Korobeinikov, V. V. Markov, and I. S. Men'shov, “Dust-air mixtures spreading in branched ducts,” in Proceedings of the 18th International Colloquium Dynamics Exploration & Reaction System, Seattle, Wash, USA, 2001.
  38. P. Kosinski and A. C. Hoffmann, “Modelling of dust lifting using the Lagrangian approach,” International Journal of Multiphase Flow, vol. 31, no. 10-11, pp. 1097–1115, 2005. View at Publisher · View at Google Scholar
  39. P. Kosinski, A. C. Hoffmann, and R. Klemens, “Dust lifting behind shock waves: comparison of two modelling techniques,” Chemical Engineering Science, vol. 60, no. 19, pp. 5219–5230, 2005. View at Publisher · View at Google Scholar
  40. C. G. Ilea, P. Kosinski, and A. C. Hoffmann, “Three-dimensional simulation of a dust lifting process with varying parameters,” International Journal of Multiphase Flow, vol. 34, no. 9, pp. 869–878, 2008. View at Publisher · View at Google Scholar
  41. K. Lebecki, J. Sliz, Z. Dyduch, and P. Wolanski, Critical Dust Layer Thickness for Combustion of Grain Dust, American Institute of Aeronautics and Astronautics, New York, NY, USA, 1990.
  42. C. W. Kauffman, M. Sichel, and P. Wolanski, “Research on dust explosions at the University of Michigan,” Powder Technology, vol. 71, no. 2, pp. 119–134, 1992. View at Publisher · View at Google Scholar
  43. P. J. Austin, F. Girodroux, Y. C. Li, C. G. Alexander, C. W. Kauffman, and M. Sichel, “Recent progress in the study of dust combustion phenomena at the University of Michigan,” in Proceedings of the 5th International Colloquium on Dust Explosions, pp. 211–214, Pultusk, Poland, April 1993.
  44. V. M. Boiko and S. V. Poplavski, “On the effect of particle concentration on acceleration of a dusty cloud behind a shock wave,” in Proceedings of the 7th International Colloquium on Dust Explosions, GexCon AS, Bergen, Norway, June 1996.
  45. R. Klemens, P. Kosinski, and P. Oleszczak, “Mathematical modelling of dust layer dispersion by rarefaction waves,” Archivum Combustionis, vol. 22, no. 1-2, pp. 3–12, 2002. View at Google Scholar
  46. A. V. Fedorov and Yu. A. Gosteev, “Quantitative description of lifting and ignition of organic fuel dusts in shock waves,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/89–Pr7/95, 2002. View at Google Scholar
  47. A. V. Fedorov and N. N. Fedorova, “Numerical simulations of dust lifting under the action of shock wave propagating along the near-wall layer,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/97–Pr7/104, 2002. View at Google Scholar
  48. F. Tamanini and E. A. Ural, “FMRC studies of parameters affecting the propagation of dust explosions,” Powder Technology, vol. 71, no. 2, pp. 135–151, 1992. View at Publisher · View at Google Scholar
  49. J. A. H. de Jong, A. C. Hoffmann, and H. J. Finkers, “Properly determine powder flowability to maximize plant output,” Chemical Engineering Progress, vol. 95, no. 4, pp. 25–34, 1999. View at Google Scholar
  50. N.O. Breum, “The rotating drum dustiness tester: variability in dustiness in relation to sample mass, testing time, and surface adhesion,” Annals of Occupational Hygiene, vol. 43, no. 8, pp. 557–566, 1999. View at Publisher · View at Google Scholar
  51. D. Dahmann and K. Möcklinghoff, “Das Staubungsverhalten quarzfeinstaubhaltige Produkte,” Gefahrstoffe- Reinhaltung der Luft, vol. 60, pp. 213–215, 2000. View at Google Scholar
  52. T. Kletz, “Inherently safer design: avoidance better than control,” in Proceedings of the 3rd World Seminar on the Explosion Phenomenon and on the Application of Explosion Protection Techniques in Practice, Flanders Expo, Gent, Belgium, February 1999.
  53. R. K. Eckhoff, “Understanding dust explosions. The role of powder science and technology,” Journal of Loss Prevention in the Process Industries, vol. 22, no. 1, pp. 105–116, 2009. View at Publisher · View at Google Scholar
  54. P. R. Amyotte and F. I. Khan, “An inherent safety framework for dust explosion prevention and mitigation,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/189–Pr7/196, 2002. View at Google Scholar
  55. P. R. Amyotte, M. J. Pegg, and F. I. Khan, “Application of inherent safety principles to dust explosion prevention and mitigation,” Process Safety and Environmental Protection, vol. 87, no. 1, pp. 35–39, 2009. View at Publisher · View at Google Scholar
  56. C. Wilén, A. Rautalin, J. García-Torrent, and E. Conde-Lázaro, “Inerting biomass dust explosions under hyperbaric working conditions,” Fuel, vol. 77, no. 9-10, pp. 1089–1092, 1998. View at Google Scholar
  57. K. Schwenzfeuer, M. Glor, and A. Gitzi, “Relation between ignition energy and limiting oxygen concentrations for powders,” in Proceedings of the 10th International Symposium Loss Prevention and Safety Promotion in the Process Industries, H. J. Pasman, O. Fredholm, and A. Jacobsson, Eds., pp. 909–916, Elsevier, Stocholm, Sweden, June 2001.
  58. Dansk Fire Eater A/S, “INERGEN. Anlœgsbeskrivelse & Design,” Report, Dansk Fire Eater A/S, Holte, Denmark, 1992. View at Google Scholar
  59. M. Mittal, “Mathematical models for minimum explosible concentration of dusts,” in Proceedings of the 5th International Colloquium on Dust Explosions, pp. 247–256, Pultusk, Poland, April 1993.
  60. I. Hesby, Ignition of dust layers by metal particle sparks, M.Sc. thesis, Department of Physics, University of Bergen, Bergen, Norway, 2000.
  61. J. Gummer and G. Lunn, “Ignitions of explosive dust clouds by smouldering and flaming agglomerates,” Journal of Loss Prevention in the Process Industries, vol. 16, no. 1, pp. 27–32, 2003. View at Publisher · View at Google Scholar
  62. U. Krause and W. Hensel, “Zündgefahren lagernder Staubschüttungen—Neue Hilfsmittel für ihre Bewertung,” VDI-Berichte, no. 1272, pp. 183–201, 1996. View at Google Scholar
  63. U. Krause and M. Schmidt, “Untersuchungen zur Zündung und Ausbreitung von Schwelbränden in Stäuben und Schüttgütern,” VDI-Berichte, no. 1601, pp. 397–410, 2001. View at Google Scholar
  64. R. K. Eckhoff, “Dust explosion hazards in the ferro-alloys industry,” in Proceedings of the 52nd Electric Furnace Conference, pp. 283–302, Iron and Steel Society, Nashville, Tenn, USA, November 1995.
  65. D. Lorenz and H. Schiebler, “Optische Temperaturmessung an Entladungsfunken im Hinblick auf deren Zündwirksamkeit bei Staubexplosionen,” VDI-Berichte, no. 1601, pp. 653–667, 2001. View at Google Scholar
  66. E. Randeberg and R. K. Eckhoff, “Initiation of dust explosions by electric spark discharges triggered by the explosive dust cloud itself,” in Proceedings of the 5th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE '04), Krakow, Poland, October 2004.
  67. E. Randeberg, W. Olsen, and R. K. Eckhoff, “A new method for generation of synchronised capacitive sparks of low energy,” Journal of Electrostatics, vol. 64, no. 3-4, pp. 263–272, 2006. View at Publisher · View at Google Scholar
  68. R. K. Eckhoff, W. Olsen, and O. Kleppa, “Influence of spark discharge duration on the minimum ignition energy of premixed propane/air,” in Proceedings of the 7th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (ISHPMIE '08), vol. 1, pp. 44–53, St. Petersburg, Russia, July 2008.
  69. E. Randeberg and R. K. Eckhoff, “Measurement of minimum ignition energies of dust clouds in the <1 mJ region,” Journal of Hazardous Materials, vol. 140, no. 1-2, pp. 237–244, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. R. K. Eckhoff and E. Randeberg, “Electrostatic spark ignition of sensitive dust clouds of MIE<1 mJ,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 396–401, 2007. View at Publisher · View at Google Scholar
  71. H.-C. Wu, R.-C. Chang, and H.-C. Hsiao, “Research of minimum ignition energy for nano titanium powder and nano Iron powder,” Journal of Loss Prevention in the Process Industries, vol. 22, no. 1, pp. 21–24, 2009. View at Publisher · View at Google Scholar
  72. G. Baudry, S. Bernard, and P. Gillard, “Influence of the oxide content on the ignition energies of aluminium powders,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 330–336, 2007. View at Publisher · View at Google Scholar
  73. M. Nifuku, S. Koyanaka, H. Ohya et al., “Ignitability characteristics of aluminium and magnesium dusts that are generated during the shredding of post-consumer wastes,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 322–329, 2007. View at Publisher · View at Google Scholar
  74. L. Marmo and D. Cavallero, “Minimum ignition energy of nylon fibres,” Journal of Loss Prevention in the Process Industries, vol. 21, no. 5, pp. 512–517, 2008. View at Publisher · View at Google Scholar
  75. Ø. Larsen, J. H. Hagen, K. van Wingerden, and R. K. Eckhoff, “Ignition of dust clouds by brush discharges in oxygen enriched atmospheres,” Gefahrstoffe- Reinhaltung der Luft, vol. 61, no. 3, pp. 85–90, 2001. View at Google Scholar
  76. R. K. Eckhoff, “A critical view on the treatment of combustible powders/dusts in the European ‘Atex 100a’ and ‘Atex 118a’ Directives,” in Proceedings of the 3rd International ESMG Symposium on Process Safety and Industrial Explosion Protection, Nürnberg, Germany, March 2004.
  77. R. K. Eckhoff, “Inadequate treatment of dust explosions and fires in ‘ATEX’. A critical view on resulting standards for electrical apparatus,” Bulk Solids & Powder Science & Technology. In press.
  78. Ch. Proust, “Laser ignition of dust clouds,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/79–Pr7/88, 2002. View at Google Scholar
  79. R. Klemens, P. Wolanski, and J. Klammer, “On unsteady flows of combustible dusty gases caused by a shock wave propagation,” in Proceedings of the 8th International Colloquium on Dust Explosions, pp. 355–363, Safety Consulting Engineers, Schaumburg, Ill, USA, September 1998.
  80. K. van Wingerden, G. H. Pedersen, G. H. Teigland, and R. K. Eckhoff, “Violence of dust explosions in integrated systems,” in Proceedings of the 28th AIChE Annual Loss Prevention Symposium, American Institute of Chemical Engineers, Atlanta, Ga, USA, April 1995, Session no. 13 on Dust Explosions.
  81. P. Holbrow, S. Andrews, and G. A. Lunn, “Dust explosions in interconnected vented vessels,” Journal of Loss Prevention in the Process Industries, vol. 9, no. 1, pp. 91–103, 1996. View at Publisher · View at Google Scholar
  82. P. Holbrow, G. A. Lunn, and A. Tyldesley, “Dust explosion protection in linked vessels: guidance for containment and venting,” Journal of Loss Prevention in the Process Industries, vol. 12, no. 3, pp. 227–234, 1999. View at Publisher · View at Google Scholar
  83. A. Vogl and S. Radandt, “Explosionsübertragung durch dünne Rohrleitungen,” VDI-Berichte, no. 1601, pp. 575–594, 2001. View at Google Scholar
  84. A. Vogl and S. Radandt, “Explosionsübertragung durch dünne Rohrleitungen,” Tech. Rep. 05-9903, Forsch.gesellsch. angew. Systemsicherheit und Arbeitsmedizin, Mannheim, Germany, 2002. View at Google Scholar
  85. M. Glor and K. Schwenzfeuer, “Einfluss der Sauerstoffkonzentration auf die Mindestzündenergie von Staüben,” in Dechema Jahrestagung, Wiesbaden, Germany, April 1999.
  86. O. Devlikanov, D. K. Kuzmenko, and N. L. Poletaev, “Nitrogen dilution for explosion of nutrient yeast dust/air mixture,” Fire Safety Journal, vol. 25, no. 4, p. 373, 1995. View at Publisher · View at Google Scholar
  87. E. Conde Lázaro and J. García Torrent, “Experimental research on explosibility at high initial pressures of combustible dusts,” Journal of Loss Prevention in the Process Industries, vol. 13, no. 3–5, pp. 221–228, 2000. View at Publisher · View at Google Scholar
  88. R. K. Eckhoff, “Partial inerting-an additional degree of freedom in dust explosion protection,” Journal of Loss Prevention in the Process Industries, vol. 17, no. 3, pp. 187–193, 2004. View at Publisher · View at Google Scholar
  89. F. Tamanini and J. V. Valiulis, “Improved guidelines for the sizing of vents in dust explosions,” Journal of Loss Prevention in the Process Industries, vol. 9, no. 1, pp. 105–118, 1996. View at Publisher · View at Google Scholar
  90. E. A. Ural, “A simplified development of a unified dust explosion vent sizing formula,” in Proceedings of the 35th Annual Loss Prevention Symposium, American Institute of Chemical Engineers, Houston, Tex, USA, April 2001.
  91. CEN, “Dust explosion venting protective systems,” European Union draft standard prEN 14491 (CEN/TC 305/WG 3/SG 5N, 27 February 2002) prepared by CEN/TC 305 ‘Potentially explosive atmospheres. Explosion prevention and protection’, 2002.
  92. R. Siwek, M. Glor, and T. Torreggiani, “Dust explosion venting at elevated initial pressure,” in Proceedings of the 7th International Symposium Loss Prevention and Safety Promotion in the Process Industries, pp. 57-1–57-15, SRP-Partners, Roma, Italy, May 1992.
  93. T. Forcier and R. Zalosh, “External pressures generated by vented gas and dust explosions,” Journal of Loss Prevention in the Process Industries, vol. 13, no. 3–5, pp. 411–417, 2000. View at Publisher · View at Google Scholar
  94. P. Holbrow, S. J. Hawksworth, and A. Tyldesley, “Thermal radiation from vented dust explosions,” Journal of Loss Prevention in the Process Industries, vol. 13, no. 6, pp. 467–476, 2000. View at Publisher · View at Google Scholar
  95. A. Harmanny, “Pressure effects from vented dust explosions,” VDI-Berichte, no. 1601, pp. 539–550, 2001. View at Google Scholar
  96. G. Li, X. Deng, W. Liu et al., “Development of a quenching venting door (QVD),” in Proceedings of the 6th International Colloquium on Dust Explosions, D. Xufan and P. Wolanski, Eds., pp. 530–534, Shenyang, China, August-September 1994.
  97. A. Emde and B. Penno, “Einbindung der Sauerstoffverdrängung und des Kontraktionseffektes mit angepasstem Wiederstandsbeiwert Zeta bei der Entwicklung neuartiger Quenchvorrichtungen zur Explosionsdruckentlastung innerhalb von Räumen,” VDI-Berichte, no. 1272, pp. 645–651, 1996. View at Google Scholar
  98. E. A. Ural, “A simplified method for predicting the effect of ducts connected to explosion vents,” Journal of Loss Prevention in the Process Industries, vol. 6, no. 1, pp. 3–10, 1993. View at Publisher · View at Google Scholar
  99. G. A. Lunn, “Institution of chemical engineers vent duct method applied to the VDI vent sizing technique,” VDI-Berichte, no. 1601, pp. 513–526, 2001. View at Google Scholar
  100. F. Tamanini and J. V. Valiulis, “A correlation for the impulse produced by vented explosions,” Journal of Loss Prevention in the Process Industries, vol. 13, no. 3–5, pp. 277–289, 2000. View at Publisher · View at Google Scholar
  101. D. Crowhurst, “Explosion protection of industrial buildings,” The European Summer School on Dust Explosion Hazards: Their Assessment and Control, organized by IBC Technical Services, in association with BMHB and IELG, Cambridge, UK, 1993.
  102. K. Höppner, “Explosionsdruckentlastung von Gebäuden,” VDI-Berichte, no. 1272, pp. 327–346, 1996. View at Google Scholar
  103. F. Tamanini, “Dust explosion vent sizing. Current methods and future developments,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/31–Pr7/44, 2002. View at Google Scholar
  104. M. Silvestrini, B. Genova, and F. J. Leon Trujillo, “Correlations for flame speed and explosion overpressure of dust clouds inside industrial enclosures,” Journal of Loss Prevention in the Process Industries, vol. 21, no. 4, pp. 374–392, 2008. View at Publisher · View at Google Scholar
  105. P. E. Moore, “Suppressants for the control of industrial explosions,” Journal of Loss Prevention in the Process Industries, vol. 9, no. 1, pp. 119–123, 1996. View at Publisher · View at Google Scholar
  106. K. Chatrathi and J. Going, “Effectiveness of dust explosion suppressants,” in Proceedings of the 9th International Symposium on Loss Prevention and Safety Promotion Process Industry, pp. 1008–1017, Barcelona, Spain, May 1998.
  107. A. Tyldesley, “Private letter to R. K. Eckhoff,” November 1993. View at Google Scholar
  108. P. E. Moore and R. Siwek, “Explosion suppression overview,” in Proceedings of the 9th International Symposium Loss Prevention and Safety Promotion in the Process Industries, pp. 745–758, Barcelona, Spain, May 1998.
  109. K. Chatrathi and J. Going, “Dust deflagration extinction,” Process Safety Progress, vol. 19, no. 3, pp. 146–153, 2000. View at Publisher · View at Google Scholar
  110. K. Brehm, “Explosionsunterdrückung bei erhöhter temperatur,” VDI-Berichte, no. 1272, pp. 261–272, 1996. View at Google Scholar
  111. CEN, “Explosion suppression systems,” European Union draft standard prEN 14373 (CEN/TC 305 WI 00305032, August 2001) prepared by CEN/TC 305 ‘Potentially explosive atmospheres. Explosion prevention and protection’, 2001.
  112. A. J. Morgan, The arresting of explosions to minimize environmental damage, Ph.D. thesis, Department of Mechanical Engineering, Brunel University, Uxbridge, UK, 2000.
  113. A. Harmanny, “Duration of vented dust explosions,” EuropEx Newsletter, vol. 23, pp. 5–9, 1993. View at Google Scholar
  114. A. Harmanny, “Structural aspects related to explosion protection techniques,” in Proceedings of the 2nd World Seminar on the Explosion Phenomenon and on the Application of Explosion Protection Techniques in Practice, EuropEx, Gent, Belgium, March 1996.
  115. A. Harmanny, “Structural aspects related to explosion resistance of process buildings, structures and silos,” in Proceedings of the 3rd World Seminar on the Explosion Phenomenon and on the Application of Explosion Protection Techniques in Practice, Flanders Expo, Gent, Belgium, February 1999.
  116. G. Li, B.-Z. Chen, X.-F. Deng, and R. K. Eckhoff, “Explosion resistance of a square plate with a square hole,” Journal de Physique IV, vol. 12, no. 7, pp. Pr7/121–Pr7/124, 2002. View at Google Scholar
  117. K. Cybulski, Z. Dyduch, K. Lebecki, and J. Sliz, “Suppression of grain dust explosions with triggered barriers,” in Proceedings of the 5th International Colloquium on Dust Explosions, pp. 437–447, Pultusk, Poland, April 1993.
  118. U. Barth, “Explosionsgefahren managen—systematisch oder mit system?” VDI-Berichte, no. 1601, pp. 207–223, 2001. View at Google Scholar
  119. U. Hesener, U. Barth, and B. Dyrba, “Erstellung von Explosionsschutzdokumenten anhand von Anlagenbeispielen der pharmazeutischen Industrie,” VDI-Berichte, no. 1601, pp. 225–237, 2001. View at Google Scholar
  120. M. M. van der Voort, A. J. J. Klein, M. de Maaijer, A. C. van den Berg, J. R. van Deursen, and N. H. A. Versloot, “A quantitative risk assessment tool for the external safety of industrial plants with a dust explosion hazard,” Journal of Loss Prevention in the Process Industries, vol. 20, no. 4–6, pp. 375–386, 2007. View at Publisher · View at Google Scholar
  121. F. Alfert, “Cost comparison of dust explosion protection techniques available on the market,” in Proceedings of the 2nd World Seminar on the Explosion Phenomenon and on the Application of Explosion Protection Techniques in Practice, EuropEx, Gent, Belgium, March 1996.
  122. H. Janssens, “Sicherheit zu einem erschwinglichen Preis!,” VDI-Berichte, no. 1601, pp. 271–279, 2001. View at Google Scholar