Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2010, Article ID 309103, 9 pages
http://dx.doi.org/10.1155/2010/309103
Research Article

C O 2 Reforming Performance and Visible Light Responsibility of Cr-Doped T i O 2 Prepared by Sol-Gel and Dip-Coating Method

1Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu 514-8507, Japan
2School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia

Received 19 May 2010; Revised 26 June 2010; Accepted 26 June 2010

Academic Editor: Xijun Hu

Copyright © 2010 Akira Nishimura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Inoue, A. Fujishima, S. Konishi, and K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powers,” Nature, vol. 277, no. 5698, pp. 637–638, 1979. View at Google Scholar · View at Scopus
  2. K. Hirano, K. Inoue, and T. Yatsu, “Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder,” Journal of Photochemistry and Photobiology, A: Chemistry, vol. 64, no. 2, pp. 255–258, 1992. View at Google Scholar · View at Scopus
  3. O. Ishitani, C. Inoue, Y. Suzuki, and T. Ibusuki, “Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2,” Journal of Photochemistry and Photobiology, A: Chemistry, vol. 72, no. 3, pp. 269–271, 1993. View at Google Scholar · View at Scopus
  4. K. Adachi, K. Ohta, and T. Mizuno, “Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide,” Solar Energy, vol. 53, no. 2, pp. 187–190, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kaneco, H. Kurimoto, Y. Shimizu, K. Ohta, and T. Mizuno, “Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2,” Energy, vol. 24, no. 1, pp. 21–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. G. R. Dey, A. D. Belapurkar, and K. Kishore, “Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 163, no. 3, pp. 503–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Halmann, V. Katzir, E. Borgarello, and J. Kiwi, “Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide,” Solar Energy Materials, vol. 10, no. 1, pp. 85–91, 1984. View at Google Scholar · View at Scopus
  8. Z. Goren, I. Willner, A. J. Nelson, and A. J. Frank, “Selective photoreduction of CO2/HCO3- to formate by aqueous suspensions and colloids of Pd-TiO2,” Journal of Physical Chemistry, vol. 94, no. 9, pp. 3784–3790, 1990. View at Google Scholar · View at Scopus
  9. H. Yamashita, H. Nishiguchi, N. Kamada, and M. Anpo, “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts,” Research on Chemical Intermediates, vol. 20, pp. 815–823, 1994. View at Google Scholar
  10. I.-H. Tseng, W.-C. Chang, and J. C. S. Wu, “Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts,” Applied Catalysis B: Environmental, vol. 37, no. 1, pp. 37–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-C. Lo, C.-H. Hung, C.-S. Yuan, and J.-F. Wu, “Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor,” Solar Energy Materials and Solar Cells, vol. 91, no. 19, pp. 1765–1774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Pathak, M. J. Meziani, Y. Li, L. T. Cureton, and Y.-P. Sun, “Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts,” Chemical Communications, vol. 10, no. 10, pp. 1234–1235, 2004. View at Google Scholar · View at Scopus
  13. X.-H. Xia, Z.-J. Jia, Y. Yu, Y. Liang, Z. Wang, and L.-L. Ma, “Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O,” Carbon, vol. 45, no. 4, pp. 717–721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Cecchet, M. Alebbi, C. A. Bignozzi, and F. Paolucci, “Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrodes,” Inorganica Chimica Acta, vol. 359, no. 12, pp. 3871–3874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. S. Wu and H.-M. Lin, “Photo reduction of CO2 to methanol via TiO2 photocatalyst,” International Journal of Photoenergy, vol. 7, no. 3, pp. 115–119, 2005. View at Google Scholar · View at Scopus
  16. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo, “Recent developments in titanium oxide-based photocatalysts,” Applied Catalysis A, vol. 325, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas, and M. Anpo, “Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts,” Catalysis Today, vol. 120, no. 2, pp. 133–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal, and K. Klabunde, “Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde,” Journal of Catalysis, vol. 252, no. 2, pp. 296–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Dholam, N. Patel, M. Adami, and A. Miotello, “Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst,” International Journal of Hydrogen Energy, vol. 34, no. 13, pp. 5337–5346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kamegawa, J. Sonoda, K. Sugimura, K. Mori, and H. Yamashita, “Degradation of isobutanol diluted in water over visible light sensitive vanadium doped TiO2 photocatalyst,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. 685–688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Xie, Q. Zhao, X. J. Zhao, and Y. Li, “Low temperature preparation and characterization of N-doped and N-S-codoped TiO2 by sol-gel route,” Catalysis Letters, vol. 118, no. 3-4, pp. 231–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi, and H. Haneda, “Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations,” Journal of Solid State Chemistry, vol. 178, no. 11, pp. 3293–3302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, no. 12, pp. 515–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669–13679, 1994. View at Google Scholar · View at Scopus
  25. J. Zhu, Z. Deng, and Z. Deng, “Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+,” Applied Catalysis B: Environmental, vol. 62, no. 3-4, pp. 329–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Navío, G. Colón, M. I. Litter, and G. N. Bianco, “Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate,” Journal of Molecular Catalysis A: Chemical, vol. 106, no. 3, pp. 267–276, 1996. View at Google Scholar · View at Scopus
  27. J. Zhu, W. Zheng, B. He, J. Zhang, and M. Anpo, “Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water,” Journal of Molecular Catalysis A: Chemical, vol. 216, no. 1, pp. 35–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Anpo, “Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: approaches in realizing high efficiency in the use of visible light,” Bulletin of the Chemical Society of Japan, vol. 77, no. 8, pp. 1427–1442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Anpo and M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” Journal of Catalysis, vol. 216, no. 1-2, pp. 505–516, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J.-M. Herrmann, J. Disdier, and P. Pichat, “Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination,” Chemical Physics Letters, vol. 108, no. 6, pp. 618–622, 1984. View at Google Scholar · View at Scopus
  31. H. Kato and A. Kudo, “Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” Journal of Physical Chemistry B, vol. 106, no. 19, pp. 5029–5034, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Anpo, M. Takeuchi, K. Ikeue, and S. Dohshi, “Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal iron-implanation techniques to semiconducting TiO2 and Ti/Zeolite catalysts,” Current Opinion in Solid State and Materials Science, vol. 6, pp. 381–388, 2002. View at Google Scholar
  33. T. Sumita, T. Yamaki, S. Yamamoto, and A. Miyashita, “Photo-induced surface charge separation in Cr-implanted TiO2 thin film,” Thin Solid Films, vol. 416, no. 1-2, pp. 80–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, and K. Klabunde, “Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation,” Applied Catalysis B: Environmental, vol. 91, no. 3-4, pp. 657–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. W. S. Tung and W. A. Daoud, “New approach toward nanosized ferrous ferric oxide and Fe3O4-doped titanium dioxide photocatalysts,” Applied Materials & Interfaces, vol. 1, pp. 2453–2461, 2009. View at Google Scholar
  36. J. Xu, Y. Ao, and D. Fu, “A novel Ce, C-codoped TiO2 nanoparticles and its photocatalytic activity under visible light,” Applied Surface Science, vol. 256, no. 3, pp. 884–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Žabová and V. Církva, “Microwave photocatalysis III. Transition metal ion-doped TiO2 thin films on mercury electrodeless discharge lamps: preparation, characterization and their effect on the photocatalytic degradation of mono-chloroacetic acid and Rhodamine B,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 11, pp. 1624–1630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Subramanian, S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, “Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process,” Thin Solid Films, vol. 516, no. 12, pp. 3776–3782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Ozcan, F. Yukruk, E. U. Akkaya, and D. Uner, “Dye sensitized CO2 reduction over pure and platinized TiO2,” Topics in Catalysis, vol. 44, no. 4, pp. 523–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Nishimura, N. Sugiura, S. Kato, N. Maruyama, and S. Kato, “High yield CO2 conversion into CH4 by photocatalyst multilayer film,” in Proceedings of the 2nd International Energy Conversion Engineering Conference, pp. 824–832, August 2004, AIAA2004-5619. View at Scopus
  41. A. Nishimura, N. Sugiura, M. Fujita, S. Kato, and S. Kato, “Influence of photocatalyst film forming conditions on CO2 reforming,” in Proceedings of the 3rd International Energy Conversion Engineering Conference, pp. 248–257, August 2005, AIAA2005-5536. View at Scopus
  42. A. Nishimura, N. Sugiura, M. Fujita, S. Kato, and S. Kato, “Influence of preparation conditions of coated TiO2 film on CO2 reforming performance,” Kagaku Kogaku Ronbunshu, vol. 33, no. 2, pp. 146–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Nishimura, N. Sugiura, M. Fujita, S. Kato, and S. Kato, “CO2-reforming performance of coated TiO2 film with supported metal,” Kagaku Kogaku Ronbunshu, vol. 33, no. 5, pp. 432–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. Japan Society of Mechanical Engineering, Heat Transfer Handbook, Maruzen, Tokyo, Japan, 1st edition, 1993.
  45. A. Nishimura, N. Komatsu, G. Mitsui, M. Hirota, and E. Hu, “CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrane,” Catalysis Today, vol. 148, no. 3-4, pp. 341–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Nosaka and A. Nosaka, Introduction of Photocatalyst, Tokyotosho, Tokyo, Japan, 1st edition, 2004.