Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2010, Article ID 391632, 11 pages
http://dx.doi.org/10.1155/2010/391632
Review Article

Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

Bio Engineering Laboratory (BEL), Department of Chemical Engineering, Monash University, Victoria 3800, Australia

Received 1 February 2010; Accepted 30 March 2010

Academic Editor: Ravichandra Potumarthi

Copyright © 2010 Aris Hosikian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Rasmussen, M. T. Morrissey, and L. T. Steve, “Marine biotechnology for production of food ingredients,” in Advances in Food and Nutrition Research, pp. 237–292, Academic Press, Boston, Mass, USA, 2007. View at Google Scholar
  2. A. M. Humphrey, “Chlorophyll,” Food Chemistry, vol. 5, no. 1, pp. 57–67, 1980. View at Google Scholar · View at Scopus
  3. Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, vol. 25, no. 3, pp. 294–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright, Eds., Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, UNESCO, Paris, Farnce, 1997.
  5. C. Cubas, M. Gloria Lobo, and M. González, “Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N,N-dimethylformamide using response surface methodology,” Journal of Food Composition and Analysis, vol. 21, no. 2, pp. 125–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Humphrey, “Chlorophyll as a color and functional ingredient,” Journal of Food Science, vol. 69, no. 5, pp. 422–425, 2004. View at Google Scholar · View at Scopus
  7. H. Scheer, J. L. William, and M. D. Lane, “Chlorophylls and carotenoids,” in Encyclopedia of Biological Chemistry, pp. 430–437, Elsevier, New York, NY, USA, 2004. View at Google Scholar
  8. K. Spears, “Developments in food colourings: the natural alternatives,” Trends in Biotechnology, vol. 6, no. 11, pp. 283–288, 1988. View at Google Scholar · View at Scopus
  9. C. F. Timberlake and B. S. Henry, “Plant pigments as natural food colours,” Endeavour, vol. 10, no. 1, pp. 31–36, 1986. View at Google Scholar · View at Scopus
  10. L. W. Smith and A. E. Livingston, “Wound healing: an experimental study of water soluble chlorophyll derivatives in conjunction with various antibacterial agents,” The American Journal of Surgery, vol. 67, no. 1, pp. 30–39, 1945. View at Google Scholar · View at Scopus
  11. E. B. Carpenter, “Clinical experiences with chlorophyll preparations: with particular reference to chronic osteomyelitis and chronic ulcers,” The American Journal of Surgery, vol. 77, no. 2, pp. 167–171, 1949. View at Google Scholar · View at Scopus
  12. B. Horwitz, “Role of chlorophyll in proctology,” The American Journal of Surgery, vol. 81, no. 1, pp. 81–84, 1951. View at Google Scholar · View at Scopus
  13. J. B. Cady and W. S. Morgan, “Treatment of chronic ulcers with chlorophyll: review of a series of fifty cases,” The American Journal of Surgery, vol. 75, no. 4, pp. 562–569, 1948. View at Google Scholar · View at Scopus
  14. S. L. Goldberg, “The use of water soluble chlorophyll in oral sepsis: an experimental study of 300 cases,” The American Journal of Surgery, vol. 62, no. 1, pp. 117–123, 1943. View at Google Scholar · View at Scopus
  15. U. M. Lanfer-Marquez, R. M. C. Barros, and P. Sinnecker, “Antioxidant activity of chlorophylls and their derivatives,” Food Research International, vol. 38, no. 8-9, pp. 885–891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Ferruzzi and J. Blakeslee, “Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives,” Nutrition Research, vol. 27, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Brennan and P. Owende, “Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. Florides and P. Christodoulides, “Global warming and carbon dioxide through sciences,” Environment International, vol. 35, no. 2, pp. 390–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Wang, Y. Li, N. Wu, and C. Q. Lan, “CO2 bio-mitigation using microalgae,” Applied Microbiology and Biotechnology, vol. 79, no. 5, pp. 707–718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Benemann, “CO2 mitigation with microalgae systems,” Energy Conversion and Management, vol. 38, supplement 1, pp. 475–479, 1997. View at Google Scholar · View at Scopus
  21. P. Schenk, S. Thomas-Hall, E. Stephens et al., “Second generation biofuels: high-efficiency microalgae for biodiesel production,” BioEnergy Research, vol. 1, no. 1, pp. 20–43, 2008. View at Google Scholar
  22. E. W. Becker, Microalgae : Biotechnology and Microbiology, Cambridge University Press, Cambridge, UK, 1994.
  23. K. G. Zeiler, D. A. Heacox, S. T. Toon, K. L. Kadam, and L. M. Brown, “The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas,” Energy Conversion and Management, vol. 36, no. 6–9, pp. 707–712, 1995. View at Google Scholar · View at Scopus
  24. M. Packer, “Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy,” Energy Policy, vol. 37, no. 9, pp. 3428–3737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Masojídek, G Torzillo, J. Sven Erik, and F. Brian, “Mass cultivation of freshwater microalgae,” in Encyclopedia of Ecology, pp. 2226–2235, Academic Press, Oxford, UK, 2008. View at Google Scholar
  26. Z. Cohen, Ed., Chemicals from Microalgae, Taylor & Francis, London, UK, 1999.
  27. P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, “Commercial applications of microalgae,” Journal of Bioscience and Bioengineering, vol. 101, no. 2, pp. 87–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Ghirardi, L. Zhang, J. W. Lee et al., “Microalgae: a green source of renewable H2,” Trends in Biotechnology, vol. 18, no. 12, pp. 506–511, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Hanagata, T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube, “Tolerance of microalgae to high CO2 and high temperature,” Phytochemistry, vol. 31, no. 10, pp. 3345–3348, 1992. View at Google Scholar · View at Scopus
  30. M. A. Borowitzka, “Commercial production of microalgae: ponds, tanks, tubes and fermenters,” Journal of Biotechnology, vol. 70, no. 1–3, pp. 313–321, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. C. U. Ugwu, H. Aoyagi, and H. Uchiyama, “Photobioreactors for mass cultivation of algae,” Bioresource Technology, vol. 99, no. 10, pp. 4021–4028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Marsh, “Small wonders: biomass from algae,” Renewable Energy Focus, vol. 9, no. 7, pp. 74–78, 2009. View at Publisher · View at Google Scholar
  33. M. D. Macías-Sánchez, C. Mantell, M. Rodríguez, E. M. de la Ossa, L. M. Lubián, and O. Montero, “Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina,” Talanta, vol. 77, no. 3, pp. 948–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. P. Sartory and J. U. Grobbelaar, “Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis,” Hydrobiologia, vol. 114, no. 3, pp. 177–187, 1984. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Schumann, N. Häubner, S. Klausch, and U. Karsten, “Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades,” International Biodeterioration and Biodegradation, vol. 55, no. 3, pp. 213–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Simon and S. Helliwell, “Extraction and quantification of chlorophyll a from freshwater green algae,” Water Research, vol. 32, no. 7, pp. 2220–2223, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. R. F. C. Mantoura and C. A. Llewellyn, “The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography,” Analytica Chimica Acta, vol. 151, no. 2, pp. 297–314, 1983. View at Google Scholar · View at Scopus
  38. E. Ramsey, Q. Sun, Z. Zhang, C. Zhang, and W. Gou, “Mini-review: green sustainable processes using supercritical fluid carbon dioxide,” Journal of Environmental Sciences, vol. 21, no. 6, pp. 720–726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Herrero, J. A. Mendiola, A. Cifuentes, and E. Ibáñez, “Supercritical fluid extraction: recent advances and applications,” Journal of Chromatography A, vol. 1217, no. 16, pp. 2495–2511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Sahena, I. S. M. Zaidul, S. Jinap et al., “Application of supercritical CO2 in lipid extraction—a review,” Journal of Food Engineering, vol. 95, no. 2, pp. 240–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Brunner, “Supercritical fluids: technology and application to food processing,” Journal of Food Engineering, vol. 67, no. 1-2, pp. 21–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. L. Mendes, B. P. Nobre, M. T. Cardoso, A. P. Pereira, and A. F. Palavra, “Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae,” Inorganica Chimica Acta, vol. 356, pp. 328–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. M. D. Macías-Sánchez, C. Mantell, M. Rodríguez, E. Martínez de La Ossa, L. M. Lubián, and O. Montero, “Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana,” Journal of Food Engineering, vol. 66, no. 2, pp. 245–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. R. L. Mendes, A. D. Reis, and A. F. Palavra, “Supercritical CO2 extraction of γ-linolenic acid and other lipids from arthrospira (Spirulina)maxima: comparison with organic solvent extraction,” Food Chemistry, vol. 99, no. 1, pp. 57–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Herrero, A. Cifuentes, and E. Ibañez, “Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae—a review,” Food Chemistry, vol. 98, no. 1, pp. 136–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. D. Macías-Sánchez, C. Mantell, M. Rodríguez, E. Martínez de la Ossa, L. M. Lubián, and O. Montero, “Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp,” Journal of Supercritical Fluids, vol. 39, no. 3, pp. 323–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. J. K. Abaychi and J. P. Riley, “The determination of phytoplankton pigments by high-performance liquid chromatography,” Analytica Chimica Acta, vol. 107, pp. 1–11, 1979. View at Google Scholar · View at Scopus
  48. D. P. Sartory, “The determination of algal chlorophyllous pigments by high performance liquid chromatography and spectrophotometry,” Water Research, vol. 19, no. 5, pp. 605–610, 1985. View at Publisher · View at Google Scholar · View at Scopus
  49. S. W. Jeffrey, “Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae,” Biochimica et Biophysica Acta, vol. 162, no. 2, pp. 271–285, 1968. View at Google Scholar · View at Scopus
  50. J. C. Madgwick, “Chromatographic determination of chlorophylls in algal cultures and phytoplankton,” Deep Sea Research and Oceanographic Abstracts, vol. 13, no. 3, pp. 459–466, 1966. View at Google Scholar · View at Scopus
  51. S. W. Wright and J. D. Shearer, “Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton,” Journal of Chromatography A, vol. 294, pp. 281–295, 1984. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Y. C. Lynn Co and S. H. Schanderl, “Separation of chlorophylls and related plant pigments by two-dimensional thin-layer chromatography,” Journal of Chromatography A, vol. 26, pp. 442–448, 1967. View at Google Scholar · View at Scopus
  53. J. P. Riley and T. R. S. Wilson, “Use of thin-layer chromatography for separation and identification of phytoplankton pigments,” Journal of the Marine Biological Association of the United Kingdom, vol. 45, no. 3, pp. 583–591, 1965. View at Publisher · View at Google Scholar
  54. S. W. Jeffrey, “Paper-chromatographic separation of chlorophylls and carotenoids from marine algae,” Biochemical journal, vol. 80, no. 2, pp. 336–342, 1961. View at Google Scholar
  55. W. T. Shoaf, “Rapid method for the separation of chlorophylls a and b by high-pressure liquid chromatography,” Journal of Chromatography A, vol. 152, no. 1, pp. 247–249, 1978. View at Google Scholar · View at Scopus