Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2010, Article ID 518070, 9 pages
http://dx.doi.org/10.1155/2010/518070
Research Article

Process Optimization for Biodiesel Production from Corn Oil and Its Oxidative Stability

Department of Chemical Engineering, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain

Received 1 December 2009; Revised 3 March 2010; Accepted 4 March 2010

Academic Editor: Michael K. Danquah

Copyright © 2010 N. El Boulifi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Staat and E. Vallet, “Vegetable oil methyl ester as a diesel substitute,” Chemistry & Industry, vol. 21, pp. 856–863, 1994. View at Google Scholar
  2. M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez, and F. J. L. Gimenez, “Testing waste olive oil methyl ester as a fuel in a diesel engine,” Energy & Fuels, vol. 17, no. 6, pp. 1560–1565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Usta, “An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester,” Energy Conversion and Management, vol. 46, no. 15-16, pp. 2373–2386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. P. Singh and D. Singh, “Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 200–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Marchetti, V. U. Miguel, and A. F. Errazu, “Possible methods for biodiesel production,” Renewable and Sustainable Energy Reviews, vol. 11, pp. 1300–1311, 2007. View at Google Scholar
  6. G. Vicente, M. Martínez, and J. Aracil, “Integrated biodiesel production: a comparison of different homogenous catalysts systems,” Bioresource Technology, vol. 92, pp. 297–305, 2004. View at Google Scholar
  7. Y. C. Sharma and B. Singh, “Development of biodiesel from karanja, a tree found in rural India,” Fuel, vol. 87, no. 8-9, pp. 1740–1742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Knothe, “Current perspectives on biodiesel,” Information, vol. 13, no. 12, pp. 900–903, 2002. View at Google Scholar · View at Scopus
  9. H. Shi and Z. Bao, “Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction,” Bioresource Technology, vol. 99, no. 18, pp. 9025–9028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Ferella, G. Mazziotti, I. De Michelis, V. Stanisci, and F. Vegliò, “Optimization of the transesterification reaction in biodiesel production,” Fuel, vol. 89, pp. 36–42, 2010. View at Google Scholar
  11. S. V. Ghadge and H. Raheman, “Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology,” Bioresource Technology, vol. 97, no. 3, pp. 379–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. K. Tiwaria, A. Kumara, and H. Raheman, “Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process,” Biomass and Bioenergy, vol. 31, no. 8, pp. 569–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. GS AgriFuels to Convert Corn Oil into Biodiesel at Ethanol Facilities, GS AgriFuels Corporation, New York, NY, USA, 2006.
  14. R. O. Dunn and G. Knothe, “Oxidative stability of biodiesel in blends with jet fuel by analysis of oil stability index,” Journal of the American Oil Chemist's Society, vol. 80, no. 10, pp. 1047–1048, 2003. View at Google Scholar · View at Scopus
  15. F. D. Gunstone and T. P. Hilditch, “The union of gaseous oxygen with methyl oleate, linoleate, and linolenate,” Journal of the Chemical Society, pp. 836–841, 1945. View at Google Scholar · View at Scopus
  16. A. Bouaid, M. Martínez, and J. Aracil, “Long storage stability of biodiesel from vegetable and used frying oils,” Fuel, vol. 86, no. 16, pp. 2596–2602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bouaid, M. Martínez, and J. Aracil, “Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study,” Bioresource Technology, vol. 100, no. 7, pp. 2234–2239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Bondioli, A. Gasparoli, L. D. Bella, and T. Silvia, “Evaluation of biodiesel storage stability using reference methods,” European Journal of Lipid Science and Technology, vol. 104, no. 12, pp. 777–784, 2002. View at Google Scholar · View at Scopus
  19. B. R. Moser, “Comparative oxidative stability of fatty acid alkyl esters by accelerated methods,” Journal of the American Oil Chemist's Society, vol. 86, no. 7, pp. 699–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. O. Dunn, “Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel),” Journal of the American Oil Chemist's Society, vol. 79, no. 9, pp. 915–920, 2002. View at Google Scholar · View at Scopus
  21. M. H. Chahine and R. F. Macneill, “Effect of stabilization of crude whale oil with tertiary-butylhidroquinone and other antioxidants upon keeping quality of resultant deodorized oil. A feasibility study,” Journal of the American Oil Chemist's Society, vol. 51, no. 3, pp. 37–41, 1974. View at Google Scholar
  22. G. Box and J. Hunter, “Response surface methods,” in Statistics for Experiments Part IV: Building Models and Using Them, chapter 5, John Wiley & Sons, New York, NY, USA, 1978. View at Google Scholar
  23. G. Knothe, “Analyzing biodiesel: standards and other methods,” Journal of the American Oil Chemist's Society, vol. 83, no. 10, pp. 823–833, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Garcia, A. Coteron, M. Martínez, and J. Aracil, “Optimization of the enzymatic synthesis of isopropyl palmitate using a central composite design,” Transactions of Chemical Engineers, vol. 73, pp. 140–144, 1995. View at Google Scholar
  25. G. Vicente, A. Coteron, M. Martínez, and J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Industrial Crops and Products, vol. 8, no. 1, pp. 29–35, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Monyem, M. Canakci, and J. H. Van Gerpen, “Investigation of biodiesel thermal stability under simulated in-use conditions,” Applied Engineering in Agriculture, vol. 16, pp. 373–378, 2000. View at Google Scholar
  27. G. Knothe, “Structure indices in FA chemistry. How relevant is the iodine value?” Journal of the American Oil Chemist's Society, vol. 79, no. 9, pp. 847–854, 2002. View at Google Scholar · View at Scopus
  28. P. Bondioli, A. Gasparoli, L. D. Bella, S. Tagliabue, and G. Toso, “Biodiesel stability under commercial storage conditions over one year,” European Journal of Lipid Science and Technology, vol. 105, no. 12, pp. 735–741, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. H. A. Moser, P. C. Cooney, C. D. Evans, and J. C. Cowan, “The stability of soybean oil: effect of time and temperature on deodorization,” Journal of the American Oil Chemist's Society, vol. 43, no. 11, pp. 632–634, 1966. View at Google Scholar
  30. G. Knothe and K. R. Steidley, “Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components,” Fuel, vol. 84, no. 9, pp. 1059–1065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. W. Formo, E. Jungermann, F. Noris, and N. O. V. Sonntag, “Bailey&s Industrial Oil and Fat Products,” in Bailey's Industrial Oil and Fat Products, D. Swern, Ed., vol. 1, pp. 698–711, John Wiley & Sons, New York, NY, USA, 4th edition, 1979. View at Google Scholar
  32. G. Knothe and R. O. Dunn, “Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals,” Journal of the American Oil Chemist's Society, vol. 80, no. 10, pp. 1021–1026, 2003. View at Google Scholar · View at Scopus
  33. S. Naz, H. Sheikh, R. Siddiqi, and S. A. Sayeed, “Oxidative stability of olive, corn and soybean oil under different conditions,” Food Chemistry, vol. 88, no. 2, pp. 253–259, 2004. View at Publisher · View at Google Scholar · View at Scopus