Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012, Article ID 303874, 9 pages
http://dx.doi.org/10.1155/2012/303874
Research Article

Canonical Analysis Technique as an Approach to Determine Optimal Conditions for Lactic Acid Production by Lactobacillus helveticus ATCC 15009

1Center of Technology and Regional Development, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil
2Chemical Engineering College, Federal University of Uberlândia, 38408-100 Uberlândia, Brazil

Received 26 June 2011; Revised 8 October 2011; Accepted 25 October 2011

Academic Editor: Iftekhar A. Karimi

Copyright © 2012 Marcelo Teixeira Leite et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. T. Yang, H. Zhu, Y. Li, and G. Hong, “Continuous propionate production from whey permeate using a novel fibrous bed bioreactor,” Biotechnology and Bioengineering, vol. 43, no. 11, pp. 1124–1130, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. J. Mawson, “Bioconversions for whey utilization and waste abatement,” Bioresource Technology, vol. 47, no. 3, pp. 195–203, 1994. View at Google Scholar · View at Scopus
  3. F. V. Kosikowski, “Whey utilization and whey products,” Journal of Dairy Science, vol. 62, pp. 1149–1160, 1979. View at Google Scholar
  4. T. Sienkiewicz and C. L. Riedel, Whey and Whey Utilization, Verlag Th. Mann, Germany, 1990.
  5. M. I. González Siso, “The biotechnological utilization of cheese whey: a review,” Bioresource Technology, vol. 57, no. 1, pp. 1–11, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Fu and A. P. Mathews, “Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen,” Biochemical Engineering Journal, vol. 3, no. 3, pp. 163–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Datta, S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank, “Technological and economic potential of poly(lactic acid) and lactic acid derivatives,” FEMS Microbiology Reviews, vol. 16, no. 2-3, pp. 221–231, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Gao, T. Shimamura, N. Ishida, and H. Takahashi, “Fermentative lactic acid production with a metabolically engineered yeast immobilized in photo-crosslinkable resins,” Biochemical Engineering Journal, vol. 47, no. 1–3, pp. 66–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Liu, L. Smith, G. Wei, Y. Won, and P. X. Ma, “Surface engineering of nano-fibrous poly(L-lactic acid) scaffolds via self-assembly technique for bone tissue engineering,” Journal of Biomedical Nanotechnology, vol. 1, no. 1, pp. 54–60, 2005. View at Google Scholar
  10. G. Bustos, A. B. Moldes, J. L. Alonso, and M. Vázquez, “Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology,” Food Microbiology, vol. 21, no. 2, pp. 143–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Hofvendahl and B. Hahn-Hägerdal, “Factors affecting the fermentative lactic acid production from renewable resources,” Enzyme and Microbial Technology, vol. 26, no. 2–4, pp. 87–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hujanen, S. Linko, Y. Y. Linko, and M. Leisola, “Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441,” Applied Microbiology and Biotechnology, vol. 56, no. 1-2, pp. 126–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Téllez-Luis, A. B. Moldes, J. L. Alonso, and M. Vázquez, “Optimization of lactic acid production by Lactobacillus delbrueckii through response surface methodology,” Journal of Food Science, vol. 68, no. 4, pp. 1454–1458, 2003. View at Google Scholar · View at Scopus
  14. B. J. Naveena, M. Altaf, K. Bhadrayya, S. S. Madhavendra, and G. Reddy, “Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM,” Process Biochemistry, vol. 40, no. 2, pp. 681–690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Hair, R. L. Tatham, R. E. Anderson, and W. Black, Multivariate Data Analysis, Prentice Hall, New York, NY, USA, 5th edition, 1998.
  16. M. C. B. Fortes, A. A. M. Silva, R. C. Guimarães, C. H. Ataíde, and M. A. S. Barrozo, “Pre-separation of siliceous gangue in apatite flotation,” Industrial and Engineering Chemistry Research, vol. 46, no. 21, pp. 7027–7029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. Santana, A. C. C. Farnese, M. C. B. Fortes, C. H. Ataíde, and M. A. S. Barrozo, “Influence of particle size and reagent dosage on the performance of apatite flotation,” Separation and Purification Technology, vol. 64, no. 1, pp. 8–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. A. Tango and A. E. Ghaly, “Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions,” Biomass and Bioenergy, vol. 16, no. 1, pp. 61–78, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. C. F. J. Wu and M. Hamada, Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley & Sons, New York, NY, USA, 2000.
  20. J. de Man, M. Rogosa, and M. Sharpe, “A medium for the cultivation of Lactobacilli,” Journal of Applied Bacteriology, vol. 23, no. 1, pp. 130–135, 1960. View at Google Scholar
  21. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Google Scholar · View at Scopus
  22. B. J. B. Wood and W. H. Holzapfel, The Genera of Lactic Acid Bacteria, Blackie Academic & Professional, Glasgow, UK, 1995.
  23. U. Kulozik and J. Wilde, “Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus,” Enzyme and Microbial Technology, vol. 24, no. 5-6, pp. 297–302, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Norton, C. Lacroix, and J. C. Vuillemard, “Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production,” Enzyme and Microbial Technology, vol. 16, no. 6, pp. 457–466, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Amrane and Y. Prigent, “Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: growth and production coupling,” World Journal of Microbiology and Biotechnology, vol. 14, no. 4, pp. 529–534, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. W. Schepers, J. Thibault, and C. Lacroix, “Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. Multiple factor kinetic analysis,” Enzyme and Microbial Technology, vol. 30, no. 2, pp. 176–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. C. N. Burgos-Rubio, M. R. Okos, and P. C. Wankat, “Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus,” Biotechnology Progress, vol. 16, no. 3, pp. 305–314, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. H. Mi-Young, S. Kim, Y. Lee, M. Kim, and S. Kim, “Kinetics analysis of growth and lactic acid production in pH-controlled batch cultures of Lactobacillus casei KH-1 using yeast extract/corn steep liquor/glucose medium,” Journal of Bioscience and Bioengineering, vol. 96, no. 2, pp. 134–140, 2003. View at Publisher · View at Google Scholar
  29. M. S. A. Tango and A. E. Ghaly, “Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey,” Transactions of the American Society of Agricultural Engineers, vol. 42, no. 6, pp. 1791–1800, 1999. View at Google Scholar
  30. A. Aeschlimann and U. von Stockar, “The production of lactic acid from whey permeate by Lactobacillus helveticus,” Biotechnology Letters, vol. 11, no. 3, pp. 195–200, 1989. View at Publisher · View at Google Scholar
  31. G. G. Pritchard and T. Coolbear, “The physiology and biochemistry of the proteolytic system in lactic acid bacteria,” FEMS Microbiology Reviews, vol. 12, no. 1–3, pp. 179–206, 1993. View at Google Scholar
  32. M. Altaf, B. J. Naveena, and G. Reddy, “Use of inexpensive nitrogen sources and starch for l(+) lactic acid production in anaerobic submerged fermentation,” Bioresource Technology, vol. 98, no. 3, pp. 498–503, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. B. Gullón, J. L. Alonso, and J. C. Parajó, “Experimental evaluation of alternative fermentation media for L-lactic acid production from apple pomace,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 5, pp. 609–617, 2008. View at Publisher · View at Google Scholar
  34. L. Yu, T. Lei, X. Ren, X. Pei, and Y. Feng, “Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466,” Biochemical Engineering Journal, vol. 39, no. 3, pp. 496–502, 2008. View at Publisher · View at Google Scholar
  35. V. Kitpreechavanich, T. Maneeboon, Y. Kayano, and K. Sakai, “Comparative characterization of l-Lactic acid-producing thermotolerant Rhizopus Fungi,” Journal of Bioscience and Bioengineering, vol. 106, no. 6, pp. 541–546, 2008. View at Publisher · View at Google Scholar · View at PubMed