Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012, Article ID 392613, 9 pages
Research Article

The Flow Pattern in Single and Multiple Submerged Channels with Gas Evolution at the Electrodes

1Department of Chemical Engineering and Technology, Applied Electrochemistry, Royal Institute of Technology, KTH, 100 44 Stockholm, Sweden
2Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1180, St. Louis, MO 63130, USA
3Process R&D, Technology and Engineering, Eka Chemicals, 445 80 Bohus, Sweden
4Research, Development & Innovation, Akzo Nobel Chemicals bv, Zutphenseweg 10, P.O. Box 10, 7400 AA Deventer, The Netherlands

Received 22 November 2011; Accepted 30 January 2012

Academic Editor: Sreepriya Vedantam

Copyright © 2012 A. Alexiadis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We show that the gas-liquid flow pattern in a single gas-evolving electrochemical channel can be remarkably different from the flow pattern in multiple submerged gas-evolving electrochemical channels. This is due to the fact that in a single channel there is a higher accumulation of small bubbles and these can considerably affect the liquid velocity pattern which in turn may affect the performance of a cell. Since experimental work is often carried out in single channels, while industrial applications almost always involve multiple channels, this study provides insight into the factors that affect the flow pattern in each situation and establishes the basis for relating the behavior of single-and multiple-channel devices.