Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012, Article ID 450491, 11 pages
http://dx.doi.org/10.1155/2012/450491
Research Article

Mixing Study in an Unbaffled Stirred Precipitator Using LES Modelling

1Nuclear Energy Division, Radiochemistry and Processes Department, French Alternative Energies and Atomic Energy Commission, 30207 Bagnols sur Ceze, France
2Nuclear Energy Division, Reactor Studies Department, French Alternative Energies and Atomic Energy Commission, 34054 Grenoble, France
3Reactions and Process Engineering Laboratory, CNRS, 54001 Nancy, France

Received 9 December 2011; Revised 8 March 2012; Accepted 14 March 2012

Academic Editor: Nandkishor Nere

Copyright © 2012 Murielle Bertrand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Auchapt and A. Ferlay, “Appareil à effet vortex pour la fabrication d'un procédé,” Patent FR 1 556 996, 1981. View at Google Scholar
  2. T. Mahmud, J. N. Haque, K. J. Roberts, D. Rhodes, and D. Wilkinson, “Measurements and modelling of free-surface turbulent flows induced by a magnetic stirrer in an unbaffled stirred tank reactor,” Chemical Engineering Science, vol. 64, no. 20, pp. 4197–4209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Armenante, C. C. Chou, and R. B. Hemrajani, “Comparison of experimental and numerical velocity distribution profiles in an unbaffled mixing vessel provided with a pitched-blade turbine,” IChemE Symposium Series, vol. 136, pp. 349–356, 1994. View at Google Scholar
  4. M. Kagoshima and R. Mann, “Development of a networks-of-zones fluid mixing model for an unbaffled stirred vessel used for precipitation,” Chemical Engineering Science, vol. 61, no. 9, pp. 2852–2863, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Nagata, N. Yoshioka, and T. Yokoyama, “Studies on the power requirement of mixing impellers,” Memoirs of the Faculty of Engineering, Kyoto University, vol. 17, pp. 175–185, 1955. View at Google Scholar
  6. H. Hartmann, J. J. Derksen, and H. E. A. van den Akker, “Macroinstability uncovered in a Rushton turbine stirred tank by means of LES,” AIChE Journal, vol. 50, no. 10, pp. 2383–2393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B. N. Murthy and J. B. Joshi, “Assessment of standard k—ε{lunate}, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs,” Chemical Engineering Science, vol. 63, no. 22, pp. 5468–5495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Delafosse, A. Line, J. Morchain, and P. Guiraud, “LES and URANS simulations of hydrodynamics in mixing tank: comparison to PIV experiments,” Chemical Engineering Research and Design, vol. 86, no. 12, pp. 1322–1330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Derksen, M. S. Doelman, and H. E. A. van den Akker, “Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank,” Experiments in Fluids, vol. 27, no. 6, pp. 522–532, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Derksen and H. E. A. van den Akker, “Large eddy simulations on the flow driven by a Rushton turbine,” AIChE Journal, vol. 45, no. 2, pp. 209–221, 1999. View at Google Scholar · View at Scopus
  11. R. Alcamo, G. Micale, F. Grisafi, A. Brucato, and M. Ciofalo, “Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine,” Chemical Engineering Science, vol. 60, no. 8-9, pp. 2303–2316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. L. Yeoh, G. Papadakis, and M. Yianneskis, “Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation,” Chemical Engineering Science, vol. 60, no. 8-9, pp. 2293–2302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. S. Yoon, S. Balachandar, and M. Y. Ha, “Large eddy simulation of flow in an unbaffled stirred tank for different Reynolds numbers,” Physics of Fluids, vol. 21, no. 8, Article ID 085102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Chapelet-Arab, L. Duvieubourg, G. Nowogrocki, F. Abraham, and S. Grandjean, “U(IV)/Ln(III) mixed site in polymetallic oxalato complexes. Part III: structure of Na[Yb(C2O4)2(H2O)]·3H2O and the derived quadratic series (NH4+)1-x[Ln1-xUx (C2O4)2(H2O)]·(3+x) H2O, Ln = Y, Pr-Sm, Gd, Tb,” Journal of Solid State Chemistry, vol. 179, no. 12, pp. 4029–4036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Perry and C. Chilton, Chemical Engineer’s Handbook, McGraw-Hill, New York, NY, USA, 5th edition, 1973.
  16. S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  17. Y. Benarafa, O. Cioni, F. Ducros, and P. Sagaut, “RANS/LES coupling for unsteady turbulent flow simulation at high Reynolds number on coarse meshes,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 23-24, pp. 2939–2960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Calvin and P. Emonot, “The Trio_U project: a parallel CFD 3-dimensional code,” in Proceedings of the Scientific Computing in Object-Oriented Parallel Environments (ISCOPE '97), Y. Ishikawa, R. R. Oldehoeft, J. Reynders, and M. Tholburn, Eds., Lecture Notes in Computer Science, pp. 169–176, Springer, Marina del Rey, Calif, USA, December 1997.
  19. C. Calvin, O. Cueto, and P. Emonot, “An object-oriented approach to the design of fluid mechanics software,” Mathematical Modelling and Numerical Analysis, vol. 36, no. 5, pp. 907–921, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. http://www-trio-u.cea.fr/.
  21. B. Mathieu, O. Lebaigue, and L. Tadrist, “Dynamic contact line model applied to single bubble growth,” in Proceedings of the 41st European Two-Phase Flow Group Meeting, Trondheim, Norway, 2003.
  22. E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations,” Journal of Computational Physics, vol. 161, no. 1, pp. 35–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Mathieu, “A 3D parallel implementation of the front-tracking method for two-phase flows and moving bodies,” in Proceedings of the 177ème Session Société Hydrotechnique de France, Advances in the Modelling Methodologies of Two-Phase Flows, Lyon, France, November 2004.
  24. F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the velocity gradient tensor,” Flow, Turbulence and Combustion, vol. 62, no. 3, pp. 183–200, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Nagata, K. Yamamoto, and M. Ujhara, “Studies on the power requirement of mixing impellers,” Memoirs of the Faculty of Engineering, Kyoto University, pp. 336–349, 1958. View at Google Scholar
  26. J. Jeong and F. Hussain, “On the identification of a vortex,” Journal of Fluid Mechanics, vol. 285, pp. 69–94, 1995. View at Google Scholar · View at Scopus
  27. R. Escudié and A. Liné, “Analysis of turbulence anisotropy in a mixing tank,” Chemical Engineering Science, vol. 61, no. 9, pp. 2771–2779, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Lamarque, B. Zoppé, O. Lebaigue, Y. Dolias, M. Bertrand, and F. Ducros, “Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor,” Chemical Engineering Science, vol. 65, no. 15, pp. 4307–4322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Le Lan and H. Angelino, “Etude du vortex dans les cuves agitées,” Chemical Engineering Science, vol. 27, no. 11, pp. 1969–1978, 1972. View at Google Scholar · View at Scopus
  30. M. Bertrand-Andrieu, E. Plasari, and P. Baron, “Determination of nucleation and crystal growth kinetics in hostile environment—application to the tetravalent uranium oxalate U(C2O4)2· 6H2O,” Canadian Journal of Chemical Engineering, vol. 82, no. 5, pp. 930–938, 2004. View at Google Scholar · View at Scopus
  31. S. Lalleman, M. Bertrand, and E. Plasari, “Physical simulation of precipitation of radioactive element oxalates by using the harmless neodymium oxalate for studying the agglomeration phenomena,” Journal of Crystal Growth, vol. 342, no. 1, pp. 42–49, 2012. View at Publisher · View at Google Scholar · View at Scopus