Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2012, Article ID 956975, 9 pages
Research Article

CFD Modeling of Solid Suspension in a Stirred Tank: Effect of Drag Models and Turbulent Dispersion on Cloud Height

1ANSYS Fluent India Pvt. Ltd., MIDC, Plot No. 34/1, Rajiv Gandhi IT Park, Hinjewadi, Pune 411057, India
2ANSYS UK Ltd., Sheffield Business Park, 6 Europa View, Sheffield S9 1XH, UK
3ANSYS Inc., 1007 Church Street, Suite 250, Evanston, IL 60201, USA
4BHR Group, The Fluid Engineering Centre, Cranfield, Bedfordshire MK43 0AJ, UK

Received 10 February 2012; Accepted 13 April 2012

Academic Editor: Nandkishor Nere

Copyright © 2012 Shitanshu Gohel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Many chemical engineering processes involve the suspension of solid particles in a liquid. In dense systems, agitation leads to the formation of a clear liquid layer above a solid cloud. Cloud height, defined as the location of the clear liquid interface, is a critical measure of process performance. In this study, solid-liquid mixing experiments were conducted and cloud height was measured as a function operating conditions and stirred tank configuration. Computational fluid dynamics simulations were then performed using an Eulerian-Granular multiphase model. The effects of hindered and unhindered drag models and turbulent dispersion force on cloud height were investigated. A comparison of the experimental and computational data showed excellent agreement over the full range of conditions tested.