Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2013 (2013), Article ID 531513, 9 pages
Research Article

Chemical Reaction Effect on Transient Free Convective Flow past an Infinite Moving Vertical Cylinder

1Department of Mathematical Sciences, Bodoland University, Kokrajhar 783370, India
2Department of Mathematics, Gauhati University, Guwahati 781014, India

Received 18 March 2013; Accepted 17 August 2013

Academic Editor: Jose C. Merchuk

Copyright © 2013 Ashish Paul and Rudra Kanta Deka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An analysis is performed to study the heat and mass transfer on the flow past an infinite moving vertical cylinder, in the presence of first-order chemical reaction. The closed-form solutions of the dimensionless governing partial differential equations are obtained in terms of Bessel's functions and modified Bessel's functions by the Laplace transform technique. The transient velocity profiles, temperature profiles, and concentration profiles are studied for various sets of physical parameters, namely, the chemical reaction parameter, Prandtl number, Schmidt number, thermal Grashof number, mass Grashof number, and time. The skin friction, Nusselt number, and Sherwood number are also obtained and presented in graphs. It is observed that in presence of as well as increase in chemical reaction the flow velocity decreases. Also, in presence of destructive chemical reaction the concentration profile and Sherwood number tend to the steady state at large time.