Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2014, Article ID 394860, 6 pages
Research Article

Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

1Biochemical and Bioenvironmental Research Center, Sharif University of Technology, P.O. Box 11155-1399, Tehran, Iran
2Department of Chemical & Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-1399, Tehran, Iran
3Department of Chemical Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
4Department of Chemical Engineering, University of Tehran, P.O. Box 1466763398, Tehran, Iran

Received 8 September 2013; Revised 23 November 2013; Accepted 9 December 2013; Published 19 February 2014

Academic Editor: Raghunath V. Chaudhari

Copyright © 2014 Zahra Ghobadi Nejad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm). The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating (inhibition constant) of different inhibitors to find the most effective one. The kinetic parameters (Michaelis-Menten constant) and (maximum rate) were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate) and PMSF (phenylmethanesulfonyl fluoride) as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.