Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2014, Article ID 819536, 13 pages
http://dx.doi.org/10.1155/2014/819536
Research Article

A Novel Biosorbent, Water-Hyacinth, Uptaking Methylene Blue from Aqueous Solution: Kinetics and Equilibrium Studies

1Department of Chemical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 4 February 2014; Revised 19 March 2014; Accepted 24 March 2014; Published 15 April 2014

Academic Editor: Dmitry Murzin

Copyright © 2014 Md. Nasir Uddin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Kini, M. Saidutta, and V. R. Murty, “Studies on biosorption of methylene blue from aqueous solutions by powdered palm tree flower (Borassus flabellifer),” International Journal of Chemical Engineering, vol. 2014, Article ID 306519, 13 pages, 2014. View at Publisher · View at Google Scholar
  2. J. K. Nduka, “Application of chemically modified and unmodified waste biological sorbents in treatment of wastewater,” International Journal of Chemical Engineering, vol. 2012, Article ID 751240, 7 pages, 2012. View at Publisher · View at Google Scholar
  3. P. Janoš, “Sorption of basic dyes onto iron humate,” Environmental Science and Technology, vol. 37, no. 24, pp. 5792–5798, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. I. El-Khaiary, “Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth,” Journal of Hazardous Materials, vol. 147, no. 1-2, pp. 28–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. H. Hasan, M. Talat, and S. Rai, “Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes),” Bioresource Technology, vol. 98, no. 4, pp. 918–928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Wolverton, R. McDonald, and J. Gordon, “Water hyacinths and alligator weeds for final filtration of sewage,” NASA Technical Memorandum TM-X72724, NASA, Washington, DC, USA, 1976. View at Google Scholar
  7. M. Ibrahim, R. Mahani, O. Osman, and T. Scheytt, “Effect of physical and chemical treatments on the electrical and structural properties of water hyacinth,” The Open Spectroscopy Journal, vol. 4, pp. 32–40, 2010. View at Google Scholar
  8. A. Malik, “Environmental challenge vis a vis opportunity: the case of water hyacinth,” Environment International, vol. 33, no. 1, pp. 122–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Uddin, M. Islam, and M. Abedin, “Adsorption of phenol from aqueous solution by water hyacinth ash,” ARPN Journal of Engineering and Applied Sciences, vol. 2, no. 2, pp. 11–17, 2007. View at Google Scholar
  10. R. Gandhimathi, S. Ramesh, V. Arun, and P. Nidheesh, “Biosorption of Cu(II) and Zn(II) ions from aqueous solution by water hyacinth (Eichhornia crassipes),” International Journal of Environment and Waste Management, vol. 11, no. 4, pp. 365–386, 2013. View at Google Scholar
  11. K. C. Bhainsa and S. F. D'Souza, “Uranium(VI) biosorption by dried roots of Eichhornia crassipes (water hyacinth),” Journal of Environmental Science and Health A, vol. 36, no. 9, pp. 1621–1631, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. K. S. Low, C. K. Lee, and K. K. Tan, “Biosorption of basic dyes by water hyacinth roots,” Bioresource Technology, vol. 52, no. 1, pp. 79–83, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kaur, S. Rani, and R. K. Mahajan, “Adsorptive removal of dye crystal violet onto low-cost carbon produced from Eichhornia plant: kinetic, equilibrium, and thermodynamic studies,” Desalination and Water Treatment, 2013. View at Publisher · View at Google Scholar
  14. M. Soni, A. K. Sharma, J. K. Srivastava, and J. S. Yadav, “Adsorptive removal of methylene blue dye from an aqueous solution using water hyacinth root powder as a low cost adsorbent,” International Journal of Chemical Sciences and Applications, vol. 3, no. 3, pp. 338–345, 2012. View at Google Scholar
  15. S. M. Kanawade and R. Gaikwad, “Removal of methylene blue from effluent by using activated carbon and water hyacinth as adsorbent,” International Journal of Chemical Engineering and Applications, vol. 2, pp. 317–319, 2011. View at Google Scholar
  16. M. Idrees, A. Adnan, S. Sheikh et al., “Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production,” EXCLI Journal, vol. 12, pp. 30–40, 2013. View at Google Scholar
  17. P. S. Ganesh, E. V. Ramasamy, S. Gajalakshmi, and S. A. Abbasi, “Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost,” Biochemical Engineering Journal, vol. 27, no. 1, pp. 17–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Kiefer, L. Sigg, and P. Schosseler, “Chemical and spectroscopic characterization of algae surfaces,” Environmental Science & Technology, vol. 31, no. 3, pp. 759–764, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part I. Solids,” The Journal of the American Chemical Society, vol. 38, no. 2, pp. 2221–2295, 1916. View at Google Scholar · View at Scopus
  20. H. Freundlich, “Over the adsorption in solution,” Journal of Physical Chemistry, vol. 57, pp. 385–470, 1906. View at Google Scholar
  21. K. Fytianos, E. Voudrias, and E. Kokkalis, “Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments,” Chemosphere, vol. 40, no. 1, pp. 3–6, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. I. Temkin and Pyzhev, “Kinetics of ammonia synthesis on promoted iron catalysts,” Acta Physiochimica URSS, vol. 12, pp. 327–356, 1940. View at Google Scholar
  23. G. Halsey, “Physical adsorption on non-uniform surfaces,” The Journal of Chemical Physics, vol. 16, no. 10, pp. 931–937, 1948. View at Google Scholar · View at Scopus
  24. F. Kargi and S. Ozmihci, “Biosorption performance of powdered activated sludge for removal of different dyestuffs,” Enzyme and Microbial Technology, vol. 35, no. 2-3, pp. 267–271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. S. Ho and G. McKay, “Sorption of dye from aqueous solution by peat,” Chemical Engineering Journal, vol. 70, no. 2, pp. 115–124, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. V. J. P. Poots, G. McKay, and J. J. Healy, “The removal of acid dye from effluent using natural adsorbents. I. Peat,” Water Research, vol. 10, no. 12, pp. 1061–1066, 1976. View at Publisher · View at Google Scholar · View at Scopus
  27. N. S. Maurya, A. K. Mittal, P. Cornel, and E. Rother, “Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH,” Bioresource Technology, vol. 97, no. 3, pp. 512–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. X. S. Wang, Y. Zhou, Y. Jiang, and C. Sun, “The removal of basic dyes from aqueous solutions using agricultural by-products,” Journal of Hazardous Materials, vol. 157, no. 2-3, pp. 374–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. P. K. Malik, “Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: a case study of acid yellow 36,” Dyes and Pigments, vol. 56, no. 3, pp. 239–249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. K. P. Singh, D. Mohan, S. Sinha, G. S. Tondon, and D. Gosh, “Color removal from wastewater using low-cost activated carbon derived from agricultural waste material,” Industrial and Engineering Chemistry Research, vol. 42, no. 9, pp. 1965–1976, 2003. View at Google Scholar · View at Scopus
  31. M. N. Uddin, M. T. Islam, M. H. Chakrabarti, and M. S. Islam, “Adsorptive removal of methylene blue from aqueous solutions by means of HCl treated water hyacinth: isotherms and performance studies,” Journal of Purity, Utility Reaction & Environment, vol. 2, no. 3, pp. 63–84, 2013. View at Google Scholar
  32. S. Patil, S. Renukdas, and N. Patel, “Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder,” International Journal of Environmental Sciences, vol. 1, no. 5, pp. 711–726, 2011. View at Google Scholar
  33. R. Han, W. Zou, Z. Zhang, J. Shi, and J. Yang, “Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. I. Characterization and kinetic study,” Journal of Hazardous Materials, vol. 137, no. 1, pp. 384–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Bujdák and P. Komadel, “Interaction of methylene blue with reduced charge montmorillonite,” The Journal of Physical Chemistry B, vol. 101, no. 44, pp. 9065–9068, 1997. View at Google Scholar · View at Scopus
  35. A. P. P. Cione, M. G. Neumann, and F. Gessner, “Time-dependent spectrophotometric study of the interaction of basic dyes with clays: III. Mixed dye aggregates on SWy-1 and Laponite,” Journal of Colloid and Interface Science, vol. 198, no. 1, pp. 106–112, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Ben Hamissa, F. Brouers, B. Mahjoub, and M. Seffen, “Adsorption of textile dyes using agave americana (L.) fibres: equilibrium and kinetics modelling,” Adsorption Science and Technology, vol. 25, no. 5, pp. 311–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Özdemir, M. Doǧan, and M. Alkan, “Adsorption of cationic dyes from aqueous solutions by sepiolite,” Microporous and Mesoporous Materials, vol. 96, no. 1–3, pp. 419–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Newcombe and M. Drikas, “Adsorption of NOM onto activated carbon: electrostatic and non-electrostatic effects,” Carbon, vol. 35, no. 9, pp. 1239–1250, 1997. View at Google Scholar · View at Scopus
  39. G. Alberghina, R. Bianchini, M. Fichera, and S. Fisichella, “Dimerization of Cibacron Blue F3GA and other dyes: influence of salts and temperature,” Dyes and Pigments, vol. 46, no. 3, pp. 129–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. B. E. Reed and M. R. Matsumoto, “Modeling CD adsorption in single and binary adsorbent (PAC) systems,” Journal of Environmental Engineering, vol. 119, no. 2, pp. 332–348, 1993. View at Google Scholar · View at Scopus
  41. F.-C. Wu, R.-L. Tseng, S.-C. Huang, and R.-S. Juang, “Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review,” Chemical Engineering Journal, vol. 151, no. 1–3, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. V. C. Srivastava, M. M. Swamy, I. D. Mall, B. Prasad, and I. M. Mishra, “Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 272, no. 1-2, pp. 89–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Yaneva and B. Koumanova, “Comparative modelling of mono- and dinitrophenols sorption on yellow bentonite from aqueous solutions,” Journal of Colloid and Interface Science, vol. 293, no. 2, pp. 303–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Weber and J. Morris, “Kinetics of adsorption on carbon from solution,” Journal of Sanitary Engineering Division, vol. 89, pp. 31–60, 1963. View at Google Scholar
  45. C. Aharoni, S. Sideman, and E. Hoffer, “Adsorption of phosphate ions by collodion-coated alumina,” Journal of Chemical Technology and Biotechnology, vol. 29, pp. 404–412, 1979. View at Google Scholar
  46. E. Tütem, R. Apak, and Ç. F. Ünal, “Adsorptive removal of chlorophenols from water by bituminous shale,” Water Research, vol. 32, no. 8, pp. 2315–2324, 1998. View at Publisher · View at Google Scholar · View at Scopus