Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2012, Article ID 318108, 7 pages
http://dx.doi.org/10.1155/2012/318108
Research Article

Effect of Intra-Orifice Depth on Sealing Ability of Four Materials in the Orifices of Root-Filled Teeth: An Ex-Vivo Study

1Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Endodontic Division, Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Received 19 December 2011; Revised 21 March 2012; Accepted 22 March 2012

Academic Editor: Silvio Taschieri

Copyright © 2012 Motaz Ahmad Ghulman and Madiha Gomaa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Torabinejad, B. Ung, and J. D. Kettering, “In vitro bacterial penetration of coronally unsealed endodontically treated teeth,” Journal of Endodontics, vol. 16, no. 12, pp. 566–569, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Carratù, M. Amato, F. Riccitiello, and S. Rengo, “Evaluation of leakage of bacteria and endotoxins in teeth treated endodontically by two different techniques,” Journal of Endodontics, vol. 28, no. 4, pp. 272–275, 2002. View at Google Scholar · View at Scopus
  3. A. Khayat, S. J. Lee, and M. Torabinejad, “Human saliva penetration of coronally unsealed obturated root canals,” Journal of Endodontics, vol. 19, no. 9, pp. 458–461, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. H. A. Ray and M. Trope, “Periapical status of endodontically treated teeth in relation to the technical quality of the root filling and the coronal restoration,” International Endodontic Journal, vol. 28, no. 1, pp. 12–18, 1995. View at Google Scholar · View at Scopus
  5. N. Roghanizad and J. J. Jones, “Evaluation of coronal microleakage after endodontic treatment,” Journal of Endodontics, vol. 22, no. 9, pp. 471–473, 1996. View at Google Scholar · View at Scopus
  6. J. D. Welch, R. W. Anderson, D. H. Pashley, R. N. Weller, and W. F. Kimbrough, “An assessment of the ability of various materials to seal furcation canals in molar teeth,” Journal of Endodontics, vol. 22, no. 11, pp. 608–611, 1996. View at Google Scholar · View at Scopus
  7. D. M. Pisano, P. M. DiFiore, S. B. McClanahan, E. P. Lautenschlager, and J. L. Duncan, “Intraorifice sealing of gutta-percha obturated root canals to prevent coronal microleakage,” Journal of Endodontics, vol. 24, no. 10, pp. 659–662, 1998. View at Google Scholar · View at Scopus
  8. S. Friedman, J. Shani, A. Stabholz, and J. Kaplawi, “Comparative sealing ability of temporary filling materials evaluated by leakage of radiosodium,” International Endodontic Journal, vol. 19, no. 4, pp. 187–193, 1986. View at Google Scholar · View at Scopus
  9. E. L. Pashley, L. Tao, and D. H. Pashley, “The sealing properties of temporary filling materials,” Journal of Prosthetic Dentistry, vol. 60, no. 3, pp. 292–297, 1988. View at Google Scholar · View at Scopus
  10. R. A. Barkhordar and M. M. Stark, “Sealing ability of intermediate restorations and cavity design used in endodontics,” Oral Surgery Oral Medicine and Oral Pathology, vol. 69, no. 1, pp. 99–101, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. D. E. Vire, “Failure of endodontically treated teeth: classification and evaluation,” Journal of Endodontics, vol. 17, no. 7, pp. 338–342, 1991. View at Publisher · View at Google Scholar · View at Scopus
  12. C. R. Barthel, A. Strobach, H. Briedigkeit, U. B. Göbel, and J. F. Roulet, “Leakage in roots coronally sealed with different temporary fillings,” Journal of Endodontics, vol. 25, no. 11, pp. 731–734, 1999. View at Google Scholar · View at Scopus
  13. J. E. Leonard, J. L. Gutmann, and I. Y. Guo, “Apical and coronal seal of roots obturated with a dentine bonding agent and resin,” International Endodontic Journal, vol. 29, no. 2, pp. 76–83, 1996. View at Google Scholar · View at Scopus
  14. P. Chailertvanitkul, W. P. Saunders, and D. MacKenzie, “Coronal leakage in teeth root-filled with gutta-percha and two different sealers after long-term storage,” Endodontics and Dental Traumatology, vol. 13, no. 2, pp. 82–87, 1997. View at Google Scholar · View at Scopus
  15. S. Belli, Y. Zhang, P. N. R. Pereira, and D. H. Pashley, “Adhesive sealing of the pulp chamber,” Journal of Endodontics, vol. 27, no. 8, pp. 521–526, 2001. View at Google Scholar · View at Scopus
  16. J. F. Wolcott, M. L. Hicks, and V. T. Himel, “Evaluation of pigmented intraorifice barriers in endodontically treated teeth,” Journal of Endodontics, vol. 25, no. 9, pp. 589–592, 1999. View at Google Scholar · View at Scopus
  17. R. Maruoka, T. Nikaido, M. Ikeda, R. Foxton, and J. Tagami, “Effect of resin-coating technique on coronal leakage inhibition in endodontically treated teeth,” International Chinese Journal of Dentistry, vol. 7, pp. 1–6, 2007. View at Google Scholar
  18. P. Zakizadeh, S. J. Marshall, C. I. Hoover et al., “A novel approach in assessment of coronal leakage of intraorifice barriers: a saliva leakage and micro-computed tomographic evaluation,” Journal of Endodontics, vol. 34, no. 7, pp. 871–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Parolia, M. Kundabala, S. Acharya, V. Sarawathi, V. Ballal, and M. Mohan, “Canal systems obturated with gutta-percha,” Endodontic Journal, vol. 20, pp. 65–70, 2008. View at Google Scholar
  20. E. Nagas, O. Uyanik, E. Altundasar et al., “Effect of different intraorifice barriers on the fracture resistance of roots obturated with resilon or gutta-percha,” Journal of Endodontics, vol. 36, no. 6, pp. 1061–1063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Bailón-Sánchez, S. González-Castillo, M. P. González-Rodríguez, R. Poyatos-Martínez, and C. M. Ferrer-Luque, “Intraorifice sealing ability of different materials in endodontically treated teeth,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 16, no. 1, Article ID 16862, pp. e105–e109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Ziang, Q. Zhang, and J. He, “An evaluation of intra orifice sealing materials for coronal microleakage in obturated root canals,” Quintessence, vol. 12, pp. 31–36, 2009. View at Google Scholar
  23. Z. Mohammadi and A. Khademi, “An evaluation of MTA cements as coronal barrier,” International Endodontic Journal, vol. 1, pp. 106–108, 2006. View at Google Scholar
  24. S. Jenkins, J. Kulild, K. Williams, W. Lyons, and C. Lee, “Sealing ability of three materials in the orifice of root canal systems obturated with gutta-percha,” Journal of Endodontics, vol. 32, no. 3, pp. 225–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Maloney, S. B. McClanahan, and G. G. Goodell, “The effect of thermocycling on a colored glass ionomer intracoronal barrier,” Journal of Endodontics, vol. 31, no. 7, pp. 526–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. Jack and G. G. Goodell, “In vitro comparison if microleakage between resilon alone and gutta-percha with a glass-ionimer intraorifice barrier using fluid filtration model,” Journal of Endodontics, vol. 34, no. 6, pp. 718–720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. John, T. D. Webb, G. Imamura, and G. G. Goodell, “Fluid flow evaluation of Fuji Triage and gray and white ProRoot mineral trioxide aggregate intraorifice barriers,” Journal of Endodontics, vol. 34, no. 7, pp. 830–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Akbari, A. Rouhani, S. Samiee, and H. Jafarzadeh, “Effect of dentin bonding agent on the prevention of tooth discoloration produced by mineral trioxide aggregate,” International Journal of Dentistry, vol. 2012, Article ID 563203, 3 pages, 2012. View at Publisher · View at Google Scholar
  29. R. T. Webber, C. E. Del Rio, J. M. Brady, and R. O. Segall, “Sealing quality of a temporary filling material,” Oral Surgery Oral Medicine and Oral Pathology, vol. 46, no. 1, pp. 123–130, 1978. View at Google Scholar · View at Scopus
  30. C. H. Kubo, M. C. Valera, A. P. M. Gomes, M. N. G. Mancini, and C. H. R. Camargo, “The effect of endodontic materials on the optical density of dyes used in marginal leakage studies,” Brazilian Oral Research, vol. 22, no. 1, pp. 25–30, 2008. View at Google Scholar · View at Scopus
  31. A. Hosseinnia, M. Keyanpour-Rad, and M. Pazouki, “Photo-catalytic degradation of organic dyes with different chromophores by synthesized nanosize TiO particles,” World Applied Sciences Journal, vol. 8, pp. 1327–1332, 2010. View at Google Scholar
  32. E. U. Çelik, A. G. D. Yapar, M. Ateş, and B. H. Şen, “Bacterial microleakage of barrier materials in obturated root canals,” Journal of Endodontics, vol. 32, no. 11, pp. 1074–1076, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. B. Seiler, “An evaluation of glass ionomer-based restorative materials as temporary restorations in endodontics,” General Dentistry, vol. 54, no. 1, pp. 33–36, 2006. View at Google Scholar · View at Scopus
  34. K. I. M. Delmé, P. J. Deman, M. A. A. De Bruyne, and R. J. G. De Moor, “Microleakage of four different restorative glass ionomer formulations in class V cavities: Er:YAG laser versus conventional preparation,” Photomedicine and Laser Surgery, vol. 26, no. 6, pp. 541–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Gjorgievska, J. W. Nicholson, S. Iljovska, and I. J. Slipper, “Marginaladaptation and performance of bioactive dental restorative materials in deciduous and young permanent teeth,” Journal of Applied Oral Science, vol. 16, no. 1, pp. 1–6, 2008. View at Google Scholar · View at Scopus
  36. K. Suresh and J. Nagarathna, “Evaluation of shear bond strengths of fuji II and fuji IX with and without salivary contamination on deciduous molars-an In vitro study,” Archives of Oral Sciences & Research, vol. 1, pp. 139–145, 2011. View at Google Scholar
  37. S. Rahimi, S. Shahi, M. Lotfi, H. R. Yavari, and M. E. Charehjoo, “Comparison of microleakage with three different thicknesses of mineral trioxide aggregate as root-end filling material,” Journal of Oral Science, vol. 50, no. 3, pp. 273–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Al-Kahtani, S. Shostad, R. Schifferle, and S. Bhambhani, “In-vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices,” Journal of Endodontics, vol. 31, no. 2, pp. 117–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. G. R. Lawley, W. G. Schindler, W. A. Walker, and D. Kolodrubetz, “Evaluation of ultrasonically placed MTA and fracture resistance with intracanal composite resin in a model of apexification,” Journal of Endodontics, vol. 30, no. 3, pp. 167–172, 2004. View at Google Scholar · View at Scopus
  40. F. R. Tay and D. H. Pashley, “Monoblocks in root canals: a hypothetical or a tangible goal,” Journal of Endodontics, vol. 33, no. 4, pp. 391–398, 2007. View at Publisher · View at Google Scholar · View at Scopus