Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2013 (2013), Article ID 245818, 7 pages
http://dx.doi.org/10.1155/2013/245818
Research Article

Crevicular Alkaline Phosphatase Activity and Rate of Tooth Movement of Female Orthodontic Subjects under Different Continuous Force Applications

1Department of Orthodontics, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
2Department of Orthodontics, Faculty of Dentistry, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
4School of Mathematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received 9 October 2012; Revised 17 February 2013; Accepted 14 April 2013

Academic Editor: James K. Hartsfield

Copyright © 2013 Rohaya Megat Abdul Wahab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Krishnan and Z. Davidovitch, “Cellular, molecular, and tissue-level reactions to orthodontic force,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 129, no. 4, pp. 469e1–469e32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. D. Keeling, G. J. King, E. A. McCoy, and M. Valdez, “Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 103, no. 4, pp. 320–326, 1993. View at Google Scholar · View at Scopus
  3. W. E. Roberts, J. A. Roberts, B. N. Epker, D. B. Burr, and J. K. Hartsfield, “Remodeling of mineralized tissues, part I: the frost legacy,” Seminars in Orthodontics, vol. 12, no. 4, pp. 216–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Perinetti, M. Paolantonio, M. D'Attilio et al., “Alkaline phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 122, no. 5, pp. 548–556, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. H. Samuels, S. J. Rudge, and L. H. Mair, “A clinical study of space closure with nickel-titanium closed coil springs and an elastic module,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 114, no. 1, pp. 73–79, 1998. View at Google Scholar · View at Scopus
  6. G. Perinetti, M. Paolantonio, E. Serra et al., “Longitudinal monitoring of subgingival colonization by Actinobacillus actinomycetemcomitans, and crevicular alkaline phosphatase and aspartate aminotransferase activities around orthodontically treated teeth,” Journal of Clinical Periodontology, vol. 31, no. 1, pp. 60–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. A. Asma, M. A. W. Rohaya, and Z. A. Shahrul Hisham, “Crevicular alkaline phosphatase activity during orthodontic tooth movement: canine retraction stage,” Journal of Medical Sciences, vol. 8, no. 3, pp. 228–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. W. Rohaya, Z. A. Shahrul Hisham, and K. Khazlina, “Preliminary study of aspartate aminotransferase activity in gingival crevicular fluids during orthodontic tooth movement,” Journal of Applied Sciences, vol. 9, no. 7, pp. 1393–1396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Alfaqeeh and S. Anil, “Lactate dehydrogenase activity in gingival crevicular fluid as a marker in orthodontic tooth movement,” The Open Dentistry Journal, vol. 5, pp. 105–109, 2011. View at Google Scholar
  10. A. A. A. Asma, M. A. W. Rohaya, and Z. A. Shahrul Hisham, “Pattern of crevicular alkaline phosphatase during orthodontic tooth movement: leveling and alignment stage,” Sains Malaysiana, vol. 40, no. 10, pp. 1147–1151, 2011. View at Google Scholar
  11. I. Z. Z. Abidin, S. H. Z. Ariffin, Z. Z. Ariffin, and R. M. A. Wahab, “Potential differentiation of three types of primitive cells originated from different proliferation terms of mouse blood,” Sains Malaysiana, vol. 39, no. 2, pp. 305–313, 2010. View at Google Scholar · View at Scopus
  12. S. H. Zainal Ariffin, I. Z. Zainol Abidin, M. D. Yazid, and R. Megat Abdul Wahab, “Differentiation analyses of adult suspension mononucleated peripheral blood cells of Mus musculus,” Cell Communication and Signaling, vol. 8, article 29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Yazid, S. H. Z. Ariffin, S. Senafi, M. A. Razak, and R. M. A. Wahab, “Determination of the differentiation capacities of murines' primary mononucleated cells and MC3T3-E1 cells,” Cancer Cell International, vol. 10, article 42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. Alfano, “The origin of gingival fluid,” Journal of Theoretical Biology, vol. 47, no. 1, pp. 127–136, 1974. View at Google Scholar · View at Scopus
  15. S. Kavadia-Tsatala, E. G. Kaklamanos, and L. Tsalikis, “Effects of orthodontic treatment on gingival crevicular fluid flow rate and composition: clinical implications and applications,” The International Journal of Adult Orthodontics and Orthognathic Surgery, vol. 17, no. 3, pp. 191–205, 2002. View at Google Scholar · View at Scopus
  16. Y. Ren, J. C. Maltha, and A. M. Kuijpers-Jagtman, “Optimum force magnitude for orthodontic tooth movement: a systematic literature review,” Angle Orthodontist, vol. 73, no. 1, pp. 86–92, 2003. View at Google Scholar · View at Scopus
  17. M. Y. Sueri and T. Turk, “Effectiveness of laceback ligatures on maxillary canine retraction,” Angle Orthodontist, vol. 76, no. 6, pp. 1010–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. A. A. Asma, M. A. W. Rohaya, and Z. A. Shahrul Hisham, “Crevicular alkaline phosphatase activity during orthodontic tooth movement: canine retraction stage,” Journal of Medical Sciences, vol. 8, no. 3, pp. 228–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Huffman and D. C. Way, “A clinical evaluation of tooth movement along arch wires of two different sizes,” American Journal of Orthodontics, vol. 83, no. 6, pp. 453–459, 1983. View at Google Scholar · View at Scopus
  20. M. M. Rajcich and C. Sadowsky, “Efficacy of intraarch mechanics using differential moments for achieving anchorage control in extraction cases,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 112, no. 4, pp. 441–448, 1997. View at Google Scholar · View at Scopus
  21. S. Kyrkanides, M. K. O'Banion, and J. D. Subtelny, “Nonsteroidal anti-inflammatory drugs in orthodontic tooth movement: metalloproteinase activity and collagen synthesis by endothelial cells,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 118, no. 2, pp. 203–209, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. W. Rohaya, M. D. Maryati, S. Sahidan et al., “Crevicular tartrate resistant acid phosphatase activity and rate of tooth movement under different continuous force applications,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 20, pp. 2213–2219, 2011. View at Google Scholar
  23. A. Graziano, R. D'Aquino, M. G. Cusella-De Angelis et al., “Scaffold's surface geometry significantly affects human stem cell bone tissue engineering,” Journal of Cellular Physiology, vol. 214, no. 1, pp. 166–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. J. Liou and C. S. Huang, “Rapid canine retraction through distraction of the periodontal ligament,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 114, no. 4, pp. 372–382, 1998. View at Google Scholar · View at Scopus
  25. T. R. Katona, “Flaws in root resorption assessment algorithms: role of tooth shape,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 130, no. 6, pp. 698–e19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Batra, O. Kharbanda, R. Duggal, N. Singh, and H. Parkash, “Alkaline phosphatase activity in gingival crevicular fluid during canine retraction,” Orthodontics & Craniofacial Research, vol. 9, no. 1, pp. 44–51, 2006. View at Google Scholar · View at Scopus
  27. J. A. Yee, T. Türk, S. Elekdaǧ-Türk, L. L. Cheng, and M. A. Darendeliler, “Rate of tooth movement under heavy and light continuous orthodontic forces,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 136, no. 2, pp. 150.e1–150.e9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Insoft, G. J. King, and S. D. Keeling, “The measurement of acid and alkaline phosphatase in gingival crevicular fluid during orthodontic tooth movement,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 109, no. 3, pp. 287–296, 1996. View at Google Scholar · View at Scopus
  29. M. Von Böhl, J. C. Maltha, J. W. Von Den Hoff, and A. M. Kuijpers-Jagtman, “Focal hyalinization during experimental tooth movement in beagle dogs,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 125, no. 5, pp. 615–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. G. T. Sameshima and K. O. Asgarifar, “Assessment of root resorption and root shape: periapical vs panoramic films,” Angle Orthodontist, vol. 71, no. 3, pp. 185–189, 2001. View at Google Scholar · View at Scopus
  31. J. Årtun, I. Smale, F. Behbehani, D. Doppel, M. Van't Hof, and A. M. Kuijpers-Jagtman, “Apical root resorption six and 12 months after initiation of fixed orthodontic appliance therapy,” Angle Orthodontist, vol. 75, no. 6, pp. 919–926, 2005. View at Google Scholar · View at Scopus