Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2013 (2013), Article ID 486358, 5 pages
http://dx.doi.org/10.1155/2013/486358
Research Article

The Effect of the Addition of Tricalcium Phosphate to 5% Sodium Fluoride Varnishes on the Microhardness of Enamel of Primary Teeth

1Division of Pediatric and Preventive Dentistry, Riyadh Colleges of Dentistry and Pharmacy, P.O. Box 84891, Riyadh 11681, Saudi Arabia
2Division of Restorative Dentistry, Riyadh Colleges of Dentistry and Pharmacy, P.O. Box 84891, Riyadh 11681, Saudi Arabia

Received 18 March 2013; Accepted 12 May 2013

Academic Editor: Jukka H. Meurman

Copyright © 2013 Saeed Aedha AlAmoudi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Chu, M. L. Mei, and E. C. Lo, “Use of fluorides in dental caries management,” General Dentistry, vol. 58, no. 1, pp. 37–43, 2010. View at Google Scholar
  2. R. Hawkins, D. Locker, J. Noble, and E. J. Kay, “Prevention. Part 7: professionally applied topical fluorides for caries prevention,” British Dental Journal, vol. 195, no. 6, pp. 313–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Jacobsen and D. Young, “The use of topical fluoride to prevent or reverse dental caries,” Special Care in Dentistry, vol. 23, no. 5, pp. 177–179, 2003. View at Google Scholar · View at Scopus
  4. E. C. Lo, L. M. Tenuta, and C. H. Fox, “Use of professionally administered topical fluorides in Asia,” Advances in Dental Research, vol. 24, pp. 11–15, 2012. View at Google Scholar
  5. L. Xhemnica, D. Sulo, R. Rroço, and D. Hysi, “Fluoride varnish application: a new prophylactic method in Albania. Effect on enamel carious lesions in permanent dentition,” European Journal of Paediatric Dentistry, vol. 9, no. 2, pp. 93–96, 2008. View at Google Scholar · View at Scopus
  6. B. T. Amaechi, K. Ramalingam, P. K. Mensinkai, and Chedjieu, “I. In situ remineralization of early caries by a new high-fluoride dentifrice,” General Dentistry, vol. 60, pp. 186–192, 2012. View at Google Scholar
  7. J. Vaikuntam, “Fluoride varnishes: should we be using them?” Pediatric Dentistry, vol. 22, no. 6, pp. 513–516, 2000. View at Google Scholar · View at Scopus
  8. P. Leamy, P. W. Brown, K. TenHuisen, and C. Randall, “Fluoride uptake by hydroxyapatite formed by the hydrolysis of alpha-tricalcium phosphate,” Journal of Biomedical Materials Research, vol. 42, pp. 458–464, 1998. View at Google Scholar
  9. K. S. TenHuisen and P. W. Brown, “Hydrolysis of α-tricalcium phosphate in NaF solutions,” Biomaterials, vol. 20, no. 5, pp. 427–434, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Karlinsey, A. C. MacKey, E. R. Walker, and K. E. Frederick, “Surfactant-modified β-TCP: structure, properties, and in vitro remineralization of subsurface enamel lesions,” Journal of Materials Science, vol. 21, no. 7, pp. 2009–2020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. L. Karlinsey, A. C. Mackey, T. J. Walker et al., “In vitro remineralization of human and bovine white-spot enamel lesions by NaF dentifrices: a pilot study,” Journal of Dentistry and Oral Hygiene, vol. 3, pp. 22–29, 2011. View at Google Scholar
  12. R. L. Karlinse, A. C. Mackey, G. K. Stookey, and A. M. Pfarrer, “In vitro assessments of experimental NaF dentifrices containing a prospective calcium phosphate technology,” American Journal of Dentistry, vol. 22, no. 3, pp. 180–184, 2009. View at Google Scholar · View at Scopus
  13. R. L. Karlinsey, A. C. Mackey, and C. S. Schwandt, “Effects on dentin treated with eluted multi-mineral varnish in vitro,” The Open Dentistry Journal, vol. 6, pp. 157–163, 2012. View at Google Scholar
  14. A. Gatti, L. B. Camargo, J. C. Imparato, F. M. Mendes, and D. P. Raggio, “Combination effect of fluoride dentifrices and varnish on deciduous enamel demineralization,” Brazilian Oral Research, vol. 25, pp. 433–438, 2011. View at Google Scholar
  15. M. A. R. Buzalaf, A. R. Hannas, A. C. Magalhães, D. Rios, H. M. Honório, and A. C. B. Delbem, “pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations,” Journal of Applied Oral Science, vol. 18, no. 4, pp. 316–334, 2010. View at Google Scholar · View at Scopus
  16. J. W. Bawden, “Fluoride varnish: a useful new tool for public health dentistry,” Journal of Public Health Dentistry, vol. 58, no. 4, pp. 266–269, 1998. View at Google Scholar · View at Scopus
  17. J. M. Birkeland, “Trials-results-conclusions. Duraphat-Fluor Protector,” Den Norske Tannlaegeforenings Tidende, vol. 91, no. 10, pp. 368–369, 1981. View at Google Scholar · View at Scopus
  18. D. C. Clark, J. W. Stamm, C. Tessier, and G. Robert, “The final results of the Sherbrooke-Lac Mégantic fluoride varnish study,” Journal of the Canadian Dental Association, vol. 53, no. 12, pp. 919–922, 1987. View at Google Scholar · View at Scopus
  19. D. T. Azevedo, J. J. Faraoni-Romano, R. Derceli Jdos, and R. G. Palma-Dibb, “Effect of Nd:YAG laser combined with fluoride on the prevention of primary tooth enamel demineralization,” Brazilian Dental Journal, vol. 23, no. 2, pp. 104–109, 2012. View at Google Scholar
  20. C. H. Chu and E. C. M. Lo, “Microhardness of dentine in primary teeth after topical fluoride applications,” Journal of Dentistry, vol. 36, no. 6, pp. 387–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. E. Lee, H. J. Baek, Y. H. Choi, S. H. Jeong, Y. D. Park, and K. B. Song, “Comparison of remineralization effect of three topical fluoride regimens on enamel initial carious lesions,” Journal of Dentistry, vol. 38, no. 2, pp. 166–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Murakami, M. Bönecker, M. S. N. P. Corrêa, F. M. Mendes, and C. R. M. D. Rodrigues, “Effect of fluoride varnish and gel on dental erosion in primary and permanent teeth,” Archives of Oral Biology, vol. 54, no. 11, pp. 997–1001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Rošin-Grget and I. Linčir, “Current concept on the anticaries fluoride mechanism of the action,” Collegium Antropologicum, vol. 25, no. 2, pp. 703–712, 2001. View at Google Scholar · View at Scopus
  24. J. M. S. Ferreira, A. K. R. Aragão, A. D. B. Rosa, F. C. Sampaio, and V. A. de Menezes, “Therapeutic effect of two fluoride varnishes on white spot lesions: a randomized clinical trial,” Brazilian Oral Research, vol. 23, no. 4, pp. 446–451, 2009. View at Google Scholar · View at Scopus
  25. B. R. Schemehorn, G. D. Wood, W. McHale, and A. E. Winston, “Comparison of fluoride uptake into tooth enamel from two fluoride varnishes containing different calcium phosphate sources,” Journal of Clinical Dentistry, vol. 22, no. 2, pp. 51–54, 2011. View at Google Scholar · View at Scopus
  26. P. Rirattanapong, K. Vongsavan, R. Suratit et al., “Effect of various forms of calcium in dental products on human enamel microhardness in vitro,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 43, pp. 1053–1058, 2012. View at Google Scholar
  27. C. H. Chu, E. C. M. Lo, and H. C. Lin, “Effectiveness of silver diamine fluoride and sodium fluoride varnish in arresting dentin caries in Chinese pre-school children,” Journal of Dental Research, vol. 81, no. 11, pp. 767–770, 2002. View at Google Scholar · View at Scopus
  28. R. V. Faller, S. L. Eversole, and G. E. Tzeghai, “Enamel protection: a comparison of marketed dentifrice performance against dental erosion,” The American Journal of Dentistry, vol. 24, pp. 205–210, 2011. View at Google Scholar