Table of Contents Author Guidelines Submit a Manuscript
International Journal of Dentistry
Volume 2013 (2013), Article ID 769768, 8 pages
http://dx.doi.org/10.1155/2013/769768
Research Article

Characteristics of 2 Different Commercially Available Implants with or without Nanotopography

1Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
2Department of Oral and Maxillofacial Prosthodontics and Oral Implantology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramotocho, Tokushima 770-8504, Japan
3Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, 412 96 Gothenburg, Sweden

Received 12 June 2013; Accepted 21 July 2013

Academic Editor: Stefan Vandeweghe

Copyright © 2013 Ali Alenezi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Adell, U. Lekholm, B. Rockler, and P. I. Branemark, “A 15-year study of osseointegrated implants in the treatment of the edentulous jaw,” International Journal of Oral Surgery, vol. 10, no. 6, pp. 387–416, 1981. View at Google Scholar · View at Scopus
  2. M. Esposito, J.-M. Hirsch, U. Lekholm, and P. Thomsen, “Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology,” European Journal of Oral Sciences, vol. 106, no. 1, pp. 527–551, 1998. View at Google Scholar · View at Scopus
  3. T. Albrektsson and A. Wennerberg, “Oral implant surfaces: part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them,” International Journal of Prosthodontics, vol. 17, no. 5, pp. 536–543, 2004. View at Google Scholar · View at Scopus
  4. A. A. Balshe, D. A. Assad, S. E. Eckert, S. Koka, and A. L. Weaver, “A retrospective study of the survival of smooth- and rough-surface dental implants,” The International Journal of Oral & Maxillofacial Implants, vol. 24, no. 6, pp. 1113–1118, 2009. View at Google Scholar · View at Scopus
  5. A. Rocci, M. Martignoni, and J. Gottlow, “Immediate loading of Branemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial,” Clinical Implant Dentistry and Related Research, vol. 5, supplement 1, pp. 57–63, 2003. View at Google Scholar · View at Scopus
  6. A. Wennerberg, T. Albrektsson, B. Andersson, and J. J. Krol, “A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies,” Clinical Oral Implants Research, vol. 6, no. 1, pp. 24–30, 1995. View at Google Scholar · View at Scopus
  7. A. Wennerberg, T. Albrektsson, and B. Andersson, “Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide,” International Journal of Oral and Maxillofacial Implants, vol. 11, no. 1, pp. 38–45, 1996. View at Google Scholar · View at Scopus
  8. A. Wennerberg, T. Albrektsson, and J. Lausmaa, “Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al2O3,” Journal of Biomedical Materials Research, vol. 30, no. 2, pp. 251–260, 1996. View at Google Scholar
  9. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration,” Dental Materials, vol. 23, no. 7, pp. 844–854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Buser, N. Broggini, M. Wieland et al., “Enhanced bone apposition to a chemically modified SLA titanium surface,” Journal of Dental Research, vol. 83, no. 7, pp. 529–533, 2004. View at Google Scholar · View at Scopus
  11. D. Buser, T. Nydegger, T. Oxland et al., “Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs,” Journal of Biomedical Materials Research, vol. 45, no. 2, pp. 75–83, 1999. View at Google Scholar
  12. G. B. Valverde, R. Jimbo, H. S. Teixeira, E. A. Bonfante, M. N. Janal, and P. G. Coelho, “Evaluation of surface roughness as a function of multiple blasting processing variables,” Clinical Oral Implants Research, vol. 24, no. 2, pp. 238–242, 2013. View at Google Scholar
  13. B.-S. Kang, Y.-T. Sul, S.-J. Oh, H.-J. Lee, and T. Albrektsson, “XPS, AES and SEM analysis of recent dental implants,” Acta Biomaterialia, vol. 5, no. 6, pp. 2222–2229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Valencia, C. Gretzer, and L. R. Cooper, “Surface nanofeature effects on titanium-adherent human mesenchymal stem cells,” International Journal of Oral and Maxillofacial Implants, vol. 24, no. 1, pp. 38–46, 2009. View at Google Scholar · View at Scopus
  15. K. Gotfredsen, A. Wennerberg, C. Johansson, L. T. Skovgaard, and E. Hjorting-Hansen, “Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits,” Journal of Biomedical Materials Research, vol. 29, no. 10, pp. 1223–1231, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Germanier, S. Tosatti, N. Broggini, M. Textor, and D. Buser, “Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in miniature pigs,” Clinical Oral Implants Research, vol. 17, no. 3, pp. 251–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Marin, R. Granato, M. Suzuki, J. N. Gil, A. Piattelli, and P. G. Coelho, “Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid-etched and dual acid-etched implant surfaces: an experimental study in dogs,” Journal of Periodontology, vol. 79, no. 10, pp. 1942–1949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. C. Mendes, R. Moineddin, and J. E. Davies, “Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces,” Journal of Biomedical Materials Research A, vol. 90, no. 2, pp. 577–585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Jimbo, T. Sawase, Y. Shibata et al., “Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells,” Biomaterials, vol. 28, no. 24, pp. 3469–3477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-T. Sul, E.-S. Byon, and Y. Jeong, “Biomechanical measurements of calcium-incorporated oxidized implants in rabbit bone: effect of calcium surface chemistry of a novel implant,” Clinical Implant Dentistry and Related Research, vol. 6, no. 2, pp. 101–110, 2004. View at Google Scholar · View at Scopus
  21. Y.-T. Sul, C. Johansson, A. Wennerberg, L.-R. Cho, B.-S. Chang, and T. Albrektsson, “Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure,” International Journal of Oral and Maxillofacial Implants, vol. 20, no. 3, pp. 349–359, 2005. View at Google Scholar · View at Scopus
  22. Y.-T. Sul, J. Jönsson, G.-S. Yoon, and C. Johansson, “Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite, Osseotite, SLA and TiOblast implants,” Clinical Oral Implants Research, vol. 20, no. 10, pp. 1146–1155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. T. Sul et al., “Oxidized implants and their influence on the bone response,” Journal of Materials Science, vol. 12, no. 10–12, pp. 1025–1031, 2001. View at Google Scholar
  24. L. Ferreira, J. M. Karp, L. Nobre, and R. Langer, “New opportunities: the use of nanotechnologies to manipulate and track stem cells,” Cell Stem Cell, vol. 3, no. 2, pp. 136–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. T. J. Webster and J. U. Ejiofor, “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo,” Biomaterials, vol. 25, no. 19, pp. 4731–4739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Lavenus, G. Louarn, and P. Layrolle, “Nanotechnology and dental implants,” International Journal of Biomaterials, vol. 2010, Article ID 915327, 9 pages, 2010. View at Publisher · View at Google Scholar
  27. F. Variola, J.-H. Yi, L. Richert, J. D. Wuest, F. Rosei, and A. Nanci, “Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation,” Biomaterials, vol. 29, no. 10, pp. 1285–1298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomaterials, vol. 20, no. 13, pp. 1221–1227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Enhanced functions of osteoblasts on nanophase ceramics,” Biomaterials, vol. 21, no. 17, pp. 1803–1810, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Dalby, A. Andar, A. Nag et al., “Genomic expression of mesenchymal stem cells to altered nanoscale topographies,” Journal of the Royal Society Interface, vol. 5, no. 26, pp. 1055–1065, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. D. M. D. Ehrenfest, P. G. Coelho, B.-S. Kang, Y.-T. Sul, and T. Albrektsson, “Classification of osseointegrated implant surfaces: materials, chemistry and topography,” Trends in Biotechnology, vol. 28, no. 4, pp. 198–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Jimbo, J. Sotres, C. Johansson, K. Breding, F. Currie, and A. Wennerberg, “The biological response to three different nanostructures applied on smooth implant surfaces,” Clinical Oral Implants Research, vol. 23, no. 6, pp. 706–712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. L. M. Bjursten, L. Rasmusson, S. Oh, G. C. Smith, K. S. Brammer, and S. Jin, “Titanium dioxide nanotubes enhance bone bonding in vivo,” Journal of Biomedical Materials Research A, vol. 92, no. 3, pp. 1218–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Wennerberg and T. Albrektsson, “Suggested guidelines for the topographic evaluation of implant surfaces,” International Journal of Oral and Maxillofacial Implants, vol. 15, no. 3, pp. 331–344, 2000. View at Google Scholar · View at Scopus
  35. K. Donath and G. Breuner, “A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique,” Journal of Oral Pathology, vol. 11, no. 4, pp. 318–326, 1982. View at Google Scholar · View at Scopus
  36. A. Wennerberg and T. Albrektsson, “On implant surfaces: a review of current knowledge and opinions,” The International Journal of Oral & Maxillofacial Implants, vol. 25, no. 1, pp. 63–74, 2010. View at Google Scholar · View at Scopus
  37. L. Meirelles, A. Arvidsson, T. Albrektsson, and A. Wennerberg, “Increased bone formation to unstable nano rough titanium implants,” Clinical Oral Implants Research, vol. 18, no. 3, pp. 326–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Karlsson, R. Jimbo, H. M. Fathali et al., “In vivo biomechanical stability of osseointegrating mesoporous TiO2 implants,” Acta Biomater, vol. 8, no. 12, pp. 4438–4446, 2012. View at Google Scholar
  39. Y.-T. Sul, D. H. Kwon, B.-S. Kang, S.-J. Oh, and C. Johansson, “Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants,” Clinical Oral Implants Research, vol. 24, supplement A100, pp. 8–19, 2011. View at Publisher · View at Google Scholar
  40. Y.-T. Sul, C. Johansson, and T. Albrektsson, “A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants,” Journal of the Royal Society Interface, vol. 7, no. 42, pp. 81–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Jimbo, P. G. Coelho, M. Bryington et al., “Nano hydroxyapatite-coated implants improve bone nanomechanical properties,” Journal of Dental Research, vol. 91, no. 12, pp. 1172–1177, 2012. View at Google Scholar
  42. R. Jimbo, P. G. Coelho, S. Vandeweghe et al., “Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants,” Acta Biomaterialia, vol. 7, no. 12, pp. 4229–4234, 2011. View at Publisher · View at Google Scholar · View at Scopus