International Journal of Dentistry

International Journal of Dentistry / 2018 / Article

Research Article | Open Access

Volume 2018 |Article ID 2190250 | 10 pages | https://doi.org/10.1155/2018/2190250

Dental Arch Dimensions in Saudi Adults

Academic Editor: Izzet Yavuz
Received21 Sep 2017
Revised22 Nov 2017
Accepted26 Dec 2017
Published15 Feb 2018

Abstract

Objective. The aim of this study was to investigate the arch dimensions (width, length, and depth) in Saudi Arabia. Materials and Methods. 169 orthodontic models (73 males and 96 females) made of white stone were selected according to inclusion criteria. Measurement of arch dimensions was taken including width, length, and depth at different reference points. Differences between males and females were tested using independent samples t-test. Results. The sample comprised subjects aged 18–33 years old. Most measurements showed higher values for males compared to females. Saudi males showed smaller intercanine widths compared to Caucasians and Southern Chinese but larger widths in females compared to Caucasians and smaller widths compared to Southern Chinese. Saudi males and females showed larger intermolar widths compared to Caucasians but smaller intermolar widths compared to Southern Chinese. For arch length, Saudis showed longer arches compared to Yemenis for both males and females but smaller palatal depths compared to Yemenis. Conclusions. Differences in intercanine width, intermolar width, and palatal length and depth were found between Saudis and other nationalities. Male and female participants had differences in most of the measurements.

1. Introduction

Dental arch dimensions are of special interest for dentists and orthodontists in particular. Changes in the arch width, length, and height can result from orthodontic treatment; hence, an understanding of the dental arch dimensions is crucial [15]. Dental arches have been investigated using different measurements and reference points, including but not limited to, intercanine, interpremolar, and intermolar widths, either between cusps or fossae, anterior palatal and mandibular lengths, molar vertical distance, total palatal and mandibular lengths, and palatal depth [611].

Ward et al. have reported significant changes in maxillary and mandibular intercanine widths in orthodontically treated group compared to untreated group [12]. In patients treated with Frankel II appliance, significant increases in arch width and arch perimeter were found [13].

There are many studies that have been conducted to investigate the dental arch dimensions and relationships in different ethnicities and different geographical areas [1420]. Few studies have been conducted to investigate arch dimensions in Saudi population [21, 22]. Therefore, the aim of this study was to investigate the arch dimensions (width, length, and depth) in Saudi adults.

2. Materials and Methods

This study was registered at the research center at Riyadh Colleges of Dentistry and Pharmacy with registration number: FRP/2014/73 and IRB approval was obtained. Inclusion criteria were as follows:(1)Saudi subjects over 18 years of age(2)Class I canine and molar relationships(3)Presence of all permanent teeth up to the second molars(4)No previous orthodontic treatment or facial surgeries(5)No more than mild crowding or spacing (<3 mm)(6)No history of parafunctional oral habits(7)No large restorations or crowns(8)No tooth anomalies

Orthodontic models (n = 169; 73 males and 96 females) made of white stone in the orthodontic clinics were examined; those that satisfied the inclusion criteria were selected. Measurements of arch dimensions of the maxilla and mandible (width, length, and depth) were taken as described by Ling and Wong [9] and Al-Zubair [11]. Definitions and illustrations of all variables are shown in Figures 14 and Table 1. Two examiners took the measurements using a digital sliding caliper (Carrera Precision CP9806-TF, Max Tool LLC, Calif., USA).


MeasurementDefinition

Palatal depthThe vertical distance from a point on the palatal width line to the palatal vault in the midline at the mesial palatal cups of 1st molars

3. Method Error

For the purpose of calibration, the two examiners took all the measurements on 20 dental models and then their measurements were compared.

3.1. Statistical Analysis

Independent sample t-test was used to determine any statistically significant differences between males and females for each measurement. Interclass correlation coefficient was used to determine interexaminer reliability. SPSS software was used for the statistical analysis (IBM SPSS Statistics for Mac, Version 24.0, IBM Corp., Armonk, NY).

4. Results

The sample consisted of 169 individuals (male: n = 73, aged 23.9 years ± 4.5; female: n = 96, aged 23.8 years ± 4.3). All results are shown in Tables 25. All maxillary and mandibular measurements showed statistically significant greater values for males compared to females (t-test; ) except for U7ML, U4CB, U3CL, U3CB, U3MC, U2MC, L5CL, L5CG, L4CC, L4CB, L2MC, APL, PL, TPL, AML, ML, and PD (t-test; ). Interexaminer reliability was high, ranging from 0.88 to 0.92 ().


AbbreviationGendernMeanStandard error of meanStandard deviationMinimumMaximumSignificance (2-tailed)SignificanceMean differenceStandard error difference95% confidence interval of the difference
LowerUpper

Upper molars
U7CCM7350.690.312.6645.8157.800.0001.700.420.882.53
F9648.980.282.7044.4954.71
U7MLM7344.330.716.095.5953.170.230NS1.000.83−0.642.64
F9643.330.484.724.8749.44
U7MGM7339.980.484.0720.9350.920.0261.250.560.152.35
F9638.730.323.1630.7647.38
U7DLM7346.770.413.5240.4958.300.0011.650.500.662.64
F9645.120.302.9840.4652.25
U7DCM7351.230.433.6945.5064.890.0001.860.510.852.86
F9649.380.302.9345.0556.57
U7DBM7357.980.322.7553.1264.310.0011.770.510.762.78
F9656.220.373.6551.0772.79
U7CBM7357.430.332.8452.4364.540.0002.140.461.243.04
F9655.290.313.0150.2662.33
U7MBM7356.680.332.8051.5763.350.0001.630.450.742.52
F9655.050.302.9849.4661.95
U7MCM7349.160.443.7543.9758.630.0002.690.531.633.74
F9646.470.323.1838.2658.10
U6CCF7345.380.342.9039.9652.320.0001.970.491.002.93
M9643.420.343.3238.2553.58
U6MLM7339.490.342.8733.6546.720.0001.910.510.902.92
F9637.580.363.5727.8147.94
U6MGM7333.800.332.8323.1240.580.0001.660.460.762.57
F9632.140.313.0527.5440.58
U6DLM7341.700.352.9536.4149.310.0011.730.490.762.71
F9639.970.343.3532.2653.72
U6DBM7353.250.332.8048.9761.950.0002.020.481.072.97
F9651.230.343.3041.3558.26
U6CBM7352.100.312.6145.8759.110.0002.020.441.142.89
F9650.090.313.0342.5156.82
U6MBM7351.030.363.0836.4456.780.0001.830.480.882.77
F9649.210.313.0644.2556.51
U6MCM7343.210.322.7537.6649.380.0001.750.430.902.60
F9641.450.292.7935.9647.88
Lower molars
U6MCM7343.210.322.7537.6649.380.0001.750.430.902.60
F9641.450.292.7935.9647.88
L7CCM7346.820.352.9740.7855.160.0002.190.441.323.06
F9644.630.282.7239.9051.71
L7DLM7343.180.373.1336.2849.910.0002.680.431.833.52
F9640.510.252.4435.6445.60
L7DGM7340.240.312.6333.3145.580.0002.340.391.573.11
F9637.900.252.4132.9543.49
L7MLM7339.870.322.7734.6044.370.0001.840.401.042.63
F9638.040.252.4533.0042.89
L7MCM7344.250.322.7339.5049.420.0002.190.421.373.02
F9642.060.272.6437.9348.76
L7CBM7350.600.423.5634.1456.560.0002.440.551.353.52
F9648.170.363.5139.3756.24
L7DBM7353.320.453.8336.1060.000.0002.730.581.583.87
F9650.590.383.6840.5558.40
L7DCM7349.660.393.2942.5357.210.0002.890.491.923.86
F9646.770.313.0540.4953.48
L6CCM7341.540.423.6135.8053.530.0002.030.570.913.14
F9639.510.373.6734.7553.83
L6MLM7334.720.423.5529.5245.740.0002.130.501.143.12
F9632.590.302.9528.0344.83
L6MGM7332.210.322.7727.6037.790.0002.210.431.363.05
F9630.000.282.7525.5237.62
L6MCM7338.280.332.8232.9843.510.0251.070.470.142.00
F9637.210.333.1931.4946.71
L6MBM7344.810.393.3230.1450.370.0191.150.480.192.10
F9643.670.302.9738.5749.81
L6CBM7346.940.292.4642.4052.240.0001.750.470.812.69
F9645.530.383.6933.2151.72
L6DBM7347.880.463.9233.8454.070.0002.340.591.183.51
F9634.440.313.0928.6246.46

NS: not significant; , , and .

AbbreviationGendernMeanStandard error of meanStandard deviationMinimumMaximumSignificance (2-tailed)SignificanceMean differenceStandard error difference95% confidence interval of the difference
LowerUpper

Upper premolars
U5CCM7340.530.352.9635.4347.980.0051.560.550.482.63
F9638.970.403.8832.0150.58
U5CLM7335.920.403.4329.7050.040.0002.170.541.113.23
F9633.750.363.4825.5040.34
U5CGM7332.070.342.9325.9138.190.0051.590.560.492.69
F9630.480.414.0322.8646.14
U5CBM7346.410.423.6037.8553.830.0021.730.550.642.82
F9644.680.363.5337.2451.11
U5MCM7338.780.342.9432.4945.350.0001.730.460.832.63
F9637.050.302.9531.7443.31
U4MCM7335.740.383.2129.6643.440.0031.460.490.492.42
F9634.280.253.1028.9440.86
U4CLM7330.990.403.4025.7738.910.0241.220.530.162.27
F9629.780.353.4723.8139.89
U4CGM7327.840.373.1220.8534.270.0001.720.480.782.66
F9626.120.313.0219.5432.87
U4CBM7341.060.554.7214.3649.590.278NS0.710.65−0.581.99
F9640.350.383.7227.6648.53
U4MCM7334.570.352.9626.3739.450.0321.050.480.092.00
F9633.530.333.2325.4140.55
Lower premolars
L5CCM7336.080.443.7827.9850.750.0021.640.530.602.68
F9634.440.313.0928.6246.46
L5CLM7331.320.342.9226.3437.480.142NS0.740.50-0.251.74
F9630.580.353.4725.6245.87
L5CGM7329.740.373.1624.8738.550.606NS0.571.10-1.612.75
F9629.170.929.0023.4287.64
L5MCM7334.870.332.8130.9043.340.0281.000.450.111.90
F9633.860.302.9927.5144.70
L5CBM7340.050.393.3229.8046.500.0131.370.540.292.44
F9638.680.373.6530.2644.74
L4CCM7331.230.292.4924.8936.530.102NS0.660.40-0.131.46
F9630.570.272.6724.8237.16
L4MCM7327.870.282.4123.3333.490.0051.060.370.321.79
F9626.810.242.3821.8631.37
L4CGM7326.550.363.0522.2837.350.0121.210.480.262.16
F9625.340.323.1019.7935.15
L4CBM7334.020.393.3424.0841.570.629NS0.220.46-0.691.14
F9633.790.272.6925.4638.68
L4MCM7329.140.332.8220.6037.620.0310.770.350.071.47
F9628.370.181.7724.3131.41

NS: not significant; , , and .

AbbreviationGendernMeanStandard error of meanStandard deviationMinimumMaximumSignificance (2-tailed)SignificanceMean differenceStandard error difference95% confidence interval of the difference
LowerUpper

Upper anterior teeth
U3CLM7325.950.292.4421.7931.230.147NS0.700.48−0.251.65
F9625.250.363.5116.2336.92
U3CBM7333.880.292.4726.7639.670.680NS0.170.41−0.640.97
F9633.710.282.7428.9241.78
U3MCM7327.400.272.3122.4634.490.649NS−0.310.67−1.631.02
F9627.700.555.3519.9457.25
U2MCM7316.810.121.0414.5519.120.886NS0.050.37−0.680.79
F9616.760.313.0512.2642.73
Lower anterior teeth
L3CGM7321.760.302.5517.0231.930.0001.330.340.662.00
F9626.730.262.1922.4633.15
L3CBM7326.730.262.1922.4633.150.0310.710.330.061.35
F9626.020.212.0320.9629.94
L3MCM7321.450.151.3218.7425.310.0070.590.220.161.01
F9620.860.151.4416.4722.99
L2MCM7310.810.110.959.1813.110.090NS0.230.14−0.040.50
F9610.580.080.818.7012.40

NS: not significant; , , and .

AbbreviationGendernMeanStandard error of meanStandard deviationMinimumMaximumSignificance (2-tailed)SignificanceMean differenceStandard error difference95% confidence interval of the difference
LowerUpper

APLM7311.100.968.165.9578.600.134NS1.280.85−0.402.97
F969.820.161.596.7814.67
PLM7331.980.564.752.9153.110.107NS0.940.58−0.212.08
F9631.040.282.7222.9138.26
TPLM7344.420.635.345.0351.730.182NS0.870.65−0.412.16
F9643.550.313.0434.3150.12
AMLM736.270.131.143.528.750.276NS0.200.18−0.160.56
F966.070.121.203.6010.52
MLM7326.100.252.1420.9530.230.587NS0.220.41−0.581.03
F9625.880.302.9520.9448.42
TMLM7340.760.645.504.7552.600.0141.710.690.353.07
F9639.050.353.4415.3147.82
PDM7320.900.242.0815.0224.210.264NS0.360.32−0.281.00
F9620.540.212.0914.7224.80

NS: not significant; .

PopulationMalesFemales
nMeanSESDnMeanSESD

Saudis (present study)7333.880.292.479633.710.282.74
Saudis [22]6033.92.296032.582.58
Saudis [21]7135.431.66833.691
Caucasians [20]6034.052.18332.772.2
Southern Chinese [9]16636.920.232.912435.090.323.5

n, number; SE, standard error; SD, standard deviation.

PopulationMalesFemales
nMeanSESDnMeanSESD

Saudis (present study)7345.380.342.99643.420.343.32
Saudis [21]6046.383.246044.293.03

n, number; SE, standard error; SD, standard deviation.

PopulationMalesFemales
nMeanSESDnMeanSESD

Saudis (present study)7353.250.332.89651.230.343.3
Caucasians [20]5645.592.57744.282.1
Southern Chinese [9]20956.170.192.813054.150.222.6

n, number; SE, standard error; SD, standard deviation.

PopulationMalesFemales
nMeanSESDnMeanSESD

Anterior palatal length
Saudis (present study)7311.10.968.16969.820.161.59
Yemenis [11]1138.881.081018.541.35
Palatal length
Saudis (present study)7331.980.564.759631.040.282.72
Yemenis [11]11329.712.0211330.392.12
Total palatal length
Saudis (present study)7344.420.635.349643.550.313.04
Yemenis [11]11342.622.3210142.32.43
Palatal depth
Saudis (present study)7320.900.242.089620.540.212.09
Yemenis [11]11321.171.5110120.711.39

n, number; SE, standard error; SD, standard deviation.

5. Discussion

In the present study, an effort was made to establish normal values for some parameters that have never been studied in Saudi. We chose to conduct measurements using many reference points described in the literature to allow for comparison with other populations’ measurements [9, 11].

Comparison of intercanine widths among different populations showed small differences in Saudis between the present study and other studies and close measurements compared to Caucasians [2022], while Southern Chinese showed the largest arch widths in the canine area (Table 6) [9].

Comparisons of the arch widths at the first molar showed a difference of about 1 mm between Saudis in our studies and Saudis in other studies. Southern Chinese were found to have the largest arch width followed by Saudis and then by Caucasians [9, 20] (Tables 7 and 8).

Maxillary arch length was found to be larger in Saudis compared to Yemenis in all measurements, while palatal depth slightly larger in Yemenis compared to Saudis [11] (Table 9).

The measurements established in the present study can serve as a database to which, orthodontic treatment of Saudi adults can be planned. Limitations of this study include a relatively small sample and that the study was confined to Riyadh City.

6. Conclusions

(i)This study serves the purpose of establishing a database for arch dimensions for Saudi adult population.(ii)Comparisons between Saudis and other populations showed differences in intercanine width, intermolar width, and palatal length and depth.(iii)Males and females showed statistically significant differences in most of the measurements where males had larger measured values.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  1. T. R. Hart, R. R. J. Cousley, L. S. Fishman, and R. H. Tallents, “Dentoskeletal changes following mini-implant molar intrusion in anterior open bite patients,” The Angle Orthodontist, vol. 85, no. 6, pp. 941–948, 2015. View at: Publisher Site | Google Scholar
  2. D. P. Singh, A. K. Garg, S. P. Singh, U. S. Krishna Nayak, and M. Gupta, “Comparison of the dental arch changes in patients with different malocclusions,” Indian Journal of Dental Research, vol. 25, no. 5, pp. 623–629, 2014. View at: Publisher Site | Google Scholar
  3. A. Ugolini, C. Cerruto, L. Di Vece et al., “Dental arch response to Haas-type rapid maxillary expansion anchored to deciduous vs permanent molars: a multicentric randomized controlled trial,” The Angle Orthodontist, vol. 85, no. 4, pp. 570–576, 2015. View at: Publisher Site | Google Scholar
  4. T. U. Taner, S. Ciǧer, H. El, D. Germeç, and A. Es, “Evaluation of dental arch width and form changes after orthodontic treatment and retention with a new computerized method,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 126, no. 4, pp. 464–475, 2004. View at: Publisher Site | Google Scholar
  5. X. Hua, H. Xiong, G. Han, and X. Cheng, “Correction of a dental arch-width asymmetric discrepancy with a slow maxillary contraction appliance,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 142, no. 6, pp. 842–853, 2012. View at: Publisher Site | Google Scholar
  6. A. Lundstrom, “An investigation of 202 pairs of twins regarding fundamental factors in the aetiology of malocclusion,” The Dental Record, vol. 69, no. 10, pp. 251–264, 1949. View at: Google Scholar
  7. H. V. Meredith and G. C. Cox, “Widths of the dental arches at the permanent first molars in children 9 years of age,” American Journal of Orthodontics, vol. 40, no. 2, pp. 134–144, 1954. View at: Publisher Site | Google Scholar
  8. G. Heithersay, “Further observations on the dentition of the Australian aborigine at Haast’s Bluff,” Australian Dental Journal, vol. 6, no. 1, pp. 18–28, 1961. View at: Publisher Site | Google Scholar
  9. J. Y. K. Ling and R. W. K. Wong, “Dental arch widths of Southern Chinese,” The Angle Orthodontist, vol. 79, no. 1, pp. 54–63, 2009. View at: Publisher Site | Google Scholar
  10. I. A. Aluko, O. O. DaCosta, and M. C. Isiekwe, “Dental arch widths in the early and late permanent dentitions of a Nigerian population,” Nigerian Dental Journal, vol. 17, no. 1, 2009. View at: Publisher Site | Google Scholar
  11. N. M. Al-Zubair, “Determinant factors of Yemeni maxillary arch dimensions,” Saudi Dental Journal, vol. 27, no. 1, pp. 50–54, 2015. View at: Publisher Site | Google Scholar
  12. D. E. Ward, J. Workman, R. Brown, and S. Richmond, “Changes in arch width: a 20-year longitudinal study of orthodontic treatment,” The Angle Orthodontist, vol. 76, no. 1, pp. 6–13, 2006. View at: Google Scholar
  13. R. A. McWade, A. H. Mamandras, and W. S. Hunter, “The effects of Fränkel II treatment on arch width and arch perimeter,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 92, no. 4, pp. 313–320, 1987. View at: Publisher Site | Google Scholar
  14. P. J. Mack, “Maxillary arch and central incisor dimensions in a Nigerian and British population sample,” Journal of Dentistry, vol. 9, no. 1, pp. 67–70, 1981. View at: Publisher Site | Google Scholar
  15. E. S. J. Abu Alhaija and M. A. Qudeimat, “Occlusion and tooth/arch dimensions in the primary dentition of preschool Jordanian children,” International Journal of Paediatric Dentistry, vol. 13, no. 4, pp. 230–239, 2003. View at: Publisher Site | Google Scholar
  16. K. Tsujino and Y. Machida, “A longitudinal study of the growth and development of the dental arch width from childhood to adolescence in Japanese,” The Bulletin of Tokyo Dental College, vol. 39, no. 2, pp. 75–89, 1998. View at: Google Scholar
  17. H. Noroozi and R. Saeeda, “Interrelationships between the width, depth, and perimeter of the dental arch,” The International Journal of Adult Orthodontics and Orthognathic Surgery, vol. 15, no. 1, pp. 69–71, 2000. View at: Google Scholar
  18. T. M. Walkow and S. Peck, “Dental arch width in Class II Division 2 deep-bite malocclusion,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 122, no. 6, pp. 608–613, 2002. View at: Publisher Site | Google Scholar
  19. K. Heikinheimo, M. Nystrom, T. Heikinheimo, P. Pirttiniemi, and S. Pirinen, “Dental arch width, overbite, and overjet in a Finnish population with normal occlusion between the ages of 7 and 32 years,” The European Journal of Orthodontics, vol. 34, no. 4, pp. 418–426, 2012. View at: Publisher Site | Google Scholar
  20. F. Van der Linden, H. Boersma, T. Zelders, K. A. Peters, and J. H. Raaben, “Three-dimensional analysis of dental casts by means of the optocom,” Journal of Dental Research, vol. 51, no. 4, p. 1100, 1972. View at: Publisher Site | Google Scholar
  21. H. A. Hashim and S. Al-Ghamdi, “Tooth width and arch dimensions in normal and malocclusion samples: an odontometric study,” The Journal of Contemporary Dental Practice, vol. 6, no. 2, pp. 36–51, 2005. View at: Google Scholar
  22. S. Abd-el Samad Younes, “Maxillary arch dimensions in Saudi and Egyptian population sample,” American Journal of Orthodontics, vol. 85, no. 1, pp. 83–88, 1984. View at: Publisher Site | Google Scholar

Copyright © 2018 Omar Hamad Alkadhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

1231 Views | 421 Downloads | 1 Citation
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.