International Journal of Differential Equations
 Journal metrics
Acceptance rate25%
Submission to final decision46 days
Acceptance to publication47 days
CiteScore1.400
Impact Factor-

A New Optimal Homotopy Asymptotic Method for Fractional Optimal Control Problems

Read the full article

 Journal profile

International Journal of Differential Equations publishes research on differential equations, and related integral equations, from all scientists who use differential equations as tools within their own discipline.

 Editor spotlight

International Journal of Differential Equations maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Lie Algebra Classification, Conservation Laws, and Invariant Solutions for a Generalization of the Levinson–Smith Equation

We obtain the optimal system’s generating operators associated with a generalized Levinson–Smith equation; this one is related to the Liénard equation which is important for physical, mathematical, and engineering points of view. The underlying equation has applications in mechanics and nonlinear dynamics as well. This equation has been widely studied in the qualitative scheme. Here, we treat the equation by using the Lie group method, and we obtain certain operators; using those operators, we characterized all invariants solutions associated with the generalized equation of Levinson Smith considered in this paper. Finally, we classify the Lie algebra associated with the given equation.

Research Article

Study of Convergence of Reduced Differential Transform Method for Different Classes of Differential Equations

In this work, we study the sufficient condition for convergence of the reduced differential transform method for nonlinear differential equations. The main power of this method is its ability and flexibility in solving linear and nonlinear problems properly and easily and obtain solutions both numerically and analytically. Simple approaches of reduced differential transform method and the convergence results for different classes of differential equations such as linear and nonlinear ordinary, partial, fractional, and system of differential equations are briefly discussed. Eight examples are checked to confirm convergence results as well as the strength and efficiency of the method.

Research Article

Existence and Regularity of Solutions for Unbounded Elliptic Equations with Singular Nonlinearities

For , we study existence and regularity of solutions for unbounded elliptic problems whose simplest model is , where , .

Research Article

A New Numerical Method to Solve Some in the Unit Ball and Comparison with the Finite Element and the Exact Solution

In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. The proposed method is adequate even with the singular right-hand side of type Dirac.

Research Article

Modelling the Control of the Impact of Fall Armyworm (Spodoptera frugiperda) Infestations on Maize Production

In this paper, we propose and analyze a stage-structured mathematical model for modelling the control of the impact of Fall Armyworm infestations on maize production. Preliminary analysis of the model in the vegetative and reproductive stages revealed that the two systems had a unique and positively bounded solution for all time . Numerical analysis of the model in both stages under two different cases was also considered: Case 1: different number of the adult moths in the field assumed at and Case 2: the existence of exogenous factors that lead to the immigration of adult moths in the field at time . The results indicate that the destruction of maize biomass which is accompanied by a decrease in maize plants to an average of 160 and 142 in the vegetative and reproductive stages, respectively, was observed to be higher in Case 2 than in Case 1 due to subsequent increase in egg production and density of the caterpillars in first few (10) days after immigration. This severe effect on maize plants caused by the unprecedented number of the pests influenced the extension of the model in both stages to include controls such as pesticides and harvesting. The results further show that the pest was significantly suppressed, resulting in an increase in maize plants to an average of 467 and 443 in vegetative and reproductive stages, respectively.

Research Article

About Total Stability of a Class of Nonlinear Dynamic Systems Eventually Subject to Discrete Internal Delays

This paper studies and investigates total stability results of a class of dynamic systems within a prescribed closed ball of the state space around the origin. The class of systems under study includes unstructured nonlinearities subject to multiple higher-order Lipschitz-type conditions which influence the dynamics and which can be eventually interpreted as unstructured perturbations. The results are also extended to the case of presence of multiple internal (i.e., in the state) point discrete delays. Some stability extensions are also discussed for the case when the systems are subject to forcing efforts by using links between the controllability and stabilizability concepts from control theory and the existence of stabilizing linear controls. The results are based on the ad hoc use of Gronwall’s inequality.

International Journal of Differential Equations
 Journal metrics
Acceptance rate25%
Submission to final decision46 days
Acceptance to publication47 days
CiteScore1.400
Impact Factor-
 Submit