`International Journal of Differential EquationsVolume 2010, Article ID 426213, 28 pageshttp://dx.doi.org/10.1155/2010/426213`
Review Article

## Variational Iteration Method for Initial and Boundary Value Problems Using He's Polynomials

1HITEC University, Taxila Cantonment, Pakistan
2Department of Mathematics, Ege University, Bornova 35100, İzmir, Turkey
3Faculty of Mathematics, Yazd University, P.O. Box 89195-74, Yazd, Iran

Received 7 October 2009; Revised 4 December 2009; Accepted 11 February 2010

Copyright © 2010 Syed Tauseef Mohyud-Din et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. S. Abbasbandy, “A new application of He's variational iteration method for quadratic Riccati differential equation by using Adomian's polynomials,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 59–63, 2007.
2. S. Abbasbandy, “Numerical solution of non-linear Klein-Gordon equations by variational iteration method,” International Journal for Numerical Methods in Engineering, vol. 70, no. 7, pp. 876–881, 2007.
3. M. A. Abdou and A. A. Soliman, “Variational iteration method for solving Burger's and coupled Burger's equations,” Journal of Computational and Applied Mathematics, vol. 181, no. 2, pp. 245–251, 2005.
4. M. A. Abdou and A. A. Soliman, “New applications of variational iteration method,” Physica D, vol. 211, no. 1-2, pp. 1–8, 2005.
5. T. A. Abassy, M. A. El-Tawil, and H. El Zoheiry, “Solving nonlinear partial differential equations using the modified variational iteration Padé technique,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 73–91, 2007.
6. B. Batiha, M. S. M. Noorani, and I. Hashim, “Variational iteration method for solving multispecies Lotka-Volterra equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 903–909, 2007.
7. J. Biazar and H. Ghazvini, “He's variational iteration method for fourth-order parabolic equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1047–1054, 2007.
8. A. Barari, M. Omidvar, A. R. Ghotbi, and D. D. Ganji, “Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations,” Acta Applicandae Mathematicae, vol. 104, no. 2, pp. 161–171, 2008.
9. G. Adomian, “Solution of the Thomas-Fermi equation,” Applied Mathematics Letters, vol. 11, no. 3, pp. 131–133, 1998.
10. C. Y. Chan and Y. C. Hon, “A constructive solution for a generalized Thomas-Fermi theory of ionized atoms,” Quarterly of Applied Mathematics, vol. 45, no. 3, pp. 591–599, 1987.
11. A. Cedillo, “A perturbative approach to the Thomas-Fermi equation in terms of the density,” Journal of Mathematical Physics, vol. 34, no. 7, pp. 2713–2717, 1993.
12. F. Fooladi, E. Hosseinzadeh, A. Barari, and G. Domairry, “Highly nonlinear temperature dependent fin analysis by variational iteration method,” Heat Transfer Research. In press.
13. D. D. Ganji, H. Tari, and M. B. Jooybari, “Variational iteration method and homotopy perturbation method for nonlinear evolution equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1018–1027, 2007.
14. A. Sadighi and D. D. Ganji, “Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 3, pp. 435–443, 2007.
15. D. D. Ganji and A. Sadighi, “Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 4, pp. 411–418, 2006.
16. Z. Z. Ganji, D. D. Ganji, and Y. Rostamiyan, “Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by an analytical technique,” Applied Mathematical Modelling, vol. 33, no. 7, pp. 3107–3113, 2009.
17. A. Ghorbani and J. Saberi-Nadjafi, “He's homotopy perturbation method for calculating Adomian polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 2, pp. 229–232, 2007.
18. A. Ghorbani, “Beyond Adomian polynomials: He polynomials,” Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1486–1492, 2009.
19. A. Golbabai and M. Javidi, “A variational iteration method for solving parabolic partial differential equations,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 987–992, 2007.
20. J.-H. He, “Variational approach to the Thomas-Fermi equation,” Applied Mathematics and Computation, vol. 143, no. 2-3, pp. 533–535, 2003.
21. J.-H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” International Journal of Modern Physics B, vol. 22, no. 21, pp. 3487–3578, 2008.
22. J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141–1199, 2006.
23. J.-H. He, “Variational iteration method—a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999.
24. J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115–123, 2000.
25. J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108–113, 2006.
26. J.-H. He, “Variational iteration method—some recent results and new interpretations,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 3–17, 2007.
27. J.-H. He and X.-H. Wu, “Variational iteration method: new development and applications,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 881–894, 2007.
28. J.-H. He, “The variational iteration method for eighth-order initial-boundary value problems,” Physica Scripta, vol. 76, no. 6, pp. 680–682, 2007.
29. J.-H. He, “Recent development of the homotopy perturbation method,” Topological Methods in Nonlinear Analysis, vol. 31, no. 2, pp. 205–209, 2008.
30. J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999.
31. J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87–88, 2006.
32. J.-H. He, “Comparison of homotopy perturbation method and homotopy analysis method,” Applied Mathematics and Computation, vol. 156, no. 2, pp. 527–539, 2004.
33. J.-H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207–208, 2005.
34. J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287–292, 2004.
35. J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000.
36. Y. C. Hon, “Adomian's decomposition method for Thomas-Fermi,” Southeast Asian Bulletin of Mathematics, vol. 20, no. 3, pp. 55–58, 1996.
37. M. Inokuti, H. Sekine, and T. Mura, “General use of the Lagrange multiplier in nonlinear mathematical physics,” in Variational Method in the Mechanics of Solids, S. Nemat-Naseer, Ed., pp. 156–162, Pergamon Press, New York, NY, USA, 1978.
38. D. Kaya, “An explicit and numerical solutions of some fifth-order KdV equation by decomposition method,” Applied Mathematics and Computation, vol. 144, no. 2-3, pp. 353–363, 2003.
39. D. Kaya, “On the solution of a Korteweg-de Vries like equation by the decomposition method,” International Journal of Computer Mathematics, vol. 72, no. 4, pp. 531–539, 1999.
40. A. Konuralp, “The steady temperature distributions with different types of nonlinearities,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp. 2152–2159, 2009.
41. J. Lu, “Variational iteration method for solving two-point boundary value problems,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 92–95, 2007.
42. W. X. Ma and D. T. Zhou, “Explicit exact solution of a generalized KdV equation,” Acta Mathematica Scientia, vol. 17, pp. 168–174, 1997.
43. W.-X. Ma and Y. You, “Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions,” Transactions of the American Mathematical Society, vol. 357, no. 5, pp. 1753–1778, 2005.
44. W. X. Ma and Y. You, “Rational solutions of the Toda lattice equation in Casoratian form,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 395–406, 2004.
45. W.-X. Ma, H. Wu, and J. He, “Partial differential equations possessing Frobenius integrable decompositions,” Physics Letters A, vol. 364, no. 1, pp. 29–32, 2007.
46. S. Momani and S. Abuasad, “Application of He's variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119–1123, 2006.
47. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Travelling wave solutions of seventh-order generalized KdV equations using He's polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 2, pp. 223–229, 2009.
48. S. T. Mohyud-Din and M. A. Noor, “Homotopy perturbation method for solving fourth-order boundary value problems,” Mathematical Problems in Engineering, vol. 2007, Article ID 98602, 15 pages, 2007.
49. S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Traveling wave solutions of seventh-order generalized KdV equations by variational iteration method using Adomian's polynomials,” International Journal of Modern Physics B, vol. 23, no. 15, pp. 3265–3277, 2009.
50. M. A. Noor and S. T. Mohyud-Din, “Homotopy perturbation method for solving nonlinear higher-order boundary value problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 4, pp. 395–408, 2008.
51. M. A. Noor and S. T. Mohyud-Din, “Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp. 141–157, 2008.
52. M. A. Noor and S. T. Mohyud-Din, “Modified variational iteration method for heat and wave-like equations,” Acta Applicandae Mathematicae, vol. 104, no. 3, pp. 257–269, 2008.
53. M. A. Noor and S. T. Mohyud-Din, “Variational homotopy perturbation method for solving higher dimensional initial boundary value problems,” Mathematical Problems in Engineering, vol. 2008, Article ID 696734, 11 pages, 2008.
54. M. A. Noor and S. T. Mohyud-Din, “Solution of singular and nonsingular initial and boundary value problems by modified variational iteration method,” Mathematical Problems in Engineering, vol. 2008, Article ID 917407, 23 pages, 2008.
55. M. Rafei and H. Daniali, “Application of the variational iteration method to the Whitham-Broer-Kaup equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1079–1085, 2007.
56. N. H. Sweilam, “Harmonic wave generation in non linear thermoelasticity by variational iteration method and Adomian's method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 64–72, 2007.
57. N. H. Sweilam, “Fourth order integro-differential equations using variational iteration method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1086–1091, 2007.
58. M. Tatari and M. Dehghan, “On the convergence of He's variational iteration method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 121–128, 2007.
59. A.-M. Wazwaz, “The modified decomposition method and Padé approximants for solving the Thomas-Fermi equation,” Applied Mathematics and Computation, vol. 105, no. 1, pp. 11–19, 1999.
60. A.-M. Wazwaz, “Analytic treatment for variable coefficient fourth-order parabolic partial differential equations,” Applied Mathematics and Computation, vol. 123, no. 2, pp. 219–227, 2001.
61. A.-M. Wazwaz, “The decomposition method for approximate solution of the Goursat problem,” Applied Mathematics and Computation, vol. 69, no. 2-3, pp. 299–311, 1995.
62. X.-H. Wu and J.-H. He, “Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 966–986, 2007.
63. L. Xu, “The variational iteration method for fourth order boundary value problems,” Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1386–1394, 2009.
64. L. Xu, “He's homotopy perturbation method for a boundary layer equation in unbounded domain,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1067–1070, 2007.
65. L. Xu, “Variational iteration method for solving integral equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1071–1078, 2007.
66. E. Yusufoğlu, “New solitonary solutions for the MBBM equations using Exp-function method,” Physics Letters A, vol. 372, no. 4, pp. 442–446, 2008.
67. X.-W. Zhou, Y.-X. Wen, and J.-H. He, “Exp-function method to solve the nonlinear dispersive $K\left(m,n\right)$ equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 3, pp. 301–306, 2008.