`International Journal of Differential EquationsVolume 2011, Article ID 514384, 12 pageshttp://dx.doi.org/10.1155/2011/514384`
Research Article

## Modified Step Variational Iteration Method for Solving Fractional Biochemical Reaction Model

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, State University of Medan (UNIMED), Medan, Sumatera Utara 20221, Indonesia
2School of Mathematical Sciences, Faculty of Science and Technology, National University of Malaysia (UKM), Bangi, 43600 Selangor, Malaysia
3Department of Sciences, Faculty of Nursing and Science, Jerash Private University, Jerash 26150, Jordan

Received 18 February 2011; Accepted 25 March 2011

Copyright © 2011 R. Yulita Molliq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
2. R. Gorenflo and F. Mainardi, “Fractional calculus: int and differential equations of fractional order,” in Fractals and Fractional Calculus, A. Carpinteri and F. Mainardi, Eds., 1997.
3. K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002.
4. K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamicss, vol. 29, no. 1–4, pp. 3–22, 2002.
5. C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004.
6. S. S. Ray, “Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1295–1306, 2009.
7. O. Abdulaziz, I. Hashim, M. S. H. Chowdhury, and A. K. Zulkifle, “Assessment of decomposition method for linear and nonlinear fractional differential equations,” Far East Journal of Applied Mathematics, vol. 28, no. 1, pp. 95–112, 2007.
8. S. H. Hosseinnia, A. Ranjbar, and S. Momani, “Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part,” Computers & Mathematics with Applications, vol. 56, no. 12, pp. 3138–3149, 2008.
9. O. Abdulaziz, I. Hashim, and S. Momani, “Solving systems of fractional differential equations by homotopy-perturbation method,” Physics Letters A, vol. 372, no. 4, pp. 451–459, 2008.
10. L. Song and H. Zhang, “Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation,” Physics Letters A, vol. 367, no. 1-2, pp. 88–94, 2007.
11. A. S. Bataineh, A. K. Alomari, M. S. M. Noorani, I. Hashim, and R. Nazar, “Series solutions of systems of nonlinear fractional differential equations,” Acta Applicandae Mathematicae, vol. 105, no. 2, pp. 189–198, 2009.
12. A. K. Alomari, M. S. M. Noorani, and R. Nazar, “Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 4, pp. 1196–1207, 2009.
13. J. He, “Variational iteration method for delay differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 235–236, 1997.
14. J. H. He, “A new approach to linear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, pp. 230–235, 1997.
15. J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998.
16. J.-H. He and X.-H. Wu, “Variational iteration method: new development and applications,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 881–894, 2007.
17. J.-H. He, “The variational iteration method for eighth-order initial-boundary value problems,” Physica Scripta, vol. 76, no. 6, pp. 680–682, 2007.
18. L. Song, Q. Wang, and H. Zhang, “Rational approximation solution of the fractional Sharma-Tasso-Olever equation,” Journal of Computational and Applied Mathematics, vol. 224, no. 1, pp. 210–218, 2009.
19. R. Yulita Molliq, M. S. M. Noorani, I. Hashim, and R. R. Ahmad, “Approximate solutions of fractional Zakharov-Kuznetsov equations by VIM,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 103–108, 2009.
20. R. Yulita Molliq, M. S. M. Noorani, and I. Hashim, “Variational iteration method for fractional heat- and wave-like equations,” Nonlinear Analysis: Real World Applications, vol. 10, no. 3, pp. 1854–1869, 2009.
21. R. Yulita Molliq, M. S. M. Noorani, R.R. Ahmad, and A. K. Alomari, “A step variational iteration method for solving non chaotic and chaotic systems,” submitted.
22. A. K. Sen, “An application of the Adomian decomposition method to the transient behavior of a model biochemical reaction,” Journal of Mathematical Analysis and Applications, vol. 131, no. 1, pp. 232–245, 1988.
23. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529–539, 1967.
24. S. M. Goh, M. S. M. Noorani, and I. Hashim, “Introducing variational iteration method to a biochemical reaction model,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 2264–2272, 2010.
25. I. Hashim, M. S. H. Chowdhury, and S. Mawa, “On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model,” Chaos, Solitons & Fractals, vol. 36, no. 4, pp. 823–827, 2008.