Table of Contents Author Guidelines Submit a Manuscript
International Journal of Differential Equations
Volume 2011, Article ID 831436, 24 pages
http://dx.doi.org/10.1155/2011/831436
Research Article

Weak Solution to a Parabolic Nonlinear System Arising in Biological Dynamic in the Soil

1Département de Mathématiques, Faculté des Sciences, Université d'Abomey Calavi, Cotonou, Benin
2Laboratoire d'Analyse Numérique et Informatique (LANI), IRD, Antenne de Saint-Louis Université Gaston Berger de Saint-Louis, UFR SAT, Umi-Ummisco 209, BP 234 Saint-Louis, Senegal

Received 9 May 2011; Accepted 27 June 2011

Academic Editor: Elena I. Kaikina

Copyright © 2011 Côme Goudjo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Allison, “Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments,” Ecology Letters, vol. 8, no. 6, pp. 626–635, 2005. View at Publisher · View at Google Scholar
  2. B. Lèye, O. Monga, and P. Garnier, “Simulating biological dynamics using partial differential equations: application to decomposition of organic matter in 3D soil structure,” submitted to Environmental and Engineering Geoscience.
  3. J. P. Schimel and M. N. Weintraub, “The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model,” Soil Biology and Biochemistry, vol. 35, no. 4, pp. 549–563, 2003. View at Publisher · View at Google Scholar
  4. B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, Switzerland, 2007.
  5. L. A. Assalé, T. K. Boni, and D. Nabongo, “Numerical blow-up time for a semilinear parabolic equation with nonlinear boundary conditions,” Journal of Applied Mathematics, vol. 2008, Article ID 753518, 29 pages, 2008. View at Publisher · View at Google Scholar
  6. T. K. Boni, “Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre,” Comptes Rendus de l'Académie des Sciences, vol. 326, no. 3, pp. 317–322, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. A. Matoussi and M. Xu, “Sobolev solution for semilinear PDE with obstacle under monotonicity condition,” Electronic Journal of Probability, vol. 13, no. 35, pp. 1035–1067, 2008. View at Google Scholar · View at Zentralblatt MATH
  8. J. Shi and R. Shivaji, Persistence in Reaction Diffusion Models with Weak Allee Effect, Springer, 2006.
  9. F. Ribaud, “Problème de Cauchy pour les équations aux dérivées partielles semi linéaires,” Comptes Rendus de l'Académie des Sciences, vol. 322, no. 1, pp. 25–30, 2006. View at Google Scholar
  10. M. Pierre, “Global existence in reaction-diffiusion systems with control of mass: a survey,” Milan Journal of Mathematics, vol. 78, no. 2, pp. 417–455, 2010. View at Google Scholar
  11. D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1981.
  12. F. Rothe, Global Solutions of Reaction-Diffusion Systems, vol. 1072 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1984.
  13. H. Amann, “Global existence for semilinear parabolic systems,” Journal für die Reine und Angewandte Mathematik, vol. 360, pp. 47–83, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. N. D. Alikakos, “lp-bounds of solutions of reaction-diffusion equations,” Communications in Partial Differential Equations, vol. 4, no. 8, pp. 827–868, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. J. Morgan, “Global existence for semilinear parabolic systems,” SIAM Journal on Mathematical Analysis, vol. 20, no. 5, pp. 1128–1144, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. M. Pierre and D. Schmitt, “Blowup in reaction-diffusion systems with dissipation of mass,” SIAM Journal on Mathematical Analysis, vol. 28, no. 2, pp. 259–269, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. M. Pierre and D. Schmitt, “Blow up in reaction-diffusion systems with dissipation of mass,” SIAM Review, vol. 42, no. 1, pp. 93–106, 2000. View at Publisher · View at Google Scholar
  18. M. Pierre, “Weak solutions and supersolutions in l1 for reaction-diffusion systems,” Journal of Evolution Equations, vol. 3, no. 1, pp. 153–168, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Pour les Sciences et les Techniques, vol. 8 of Evolution : Semi-Groupe, Variationnel, Masson, Paris, 1988.