Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2012, Article ID 268957, 22 pages
http://dx.doi.org/10.1155/2012/268957
Review Article

Medical Therapy of Acromegaly

Interdisziplinäres Stoffwechsel-Centrum, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany

Received 30 October 2011; Revised 20 December 2011; Accepted 9 January 2012

Academic Editor: A. L. Barkan

Copyright © 2012 U. Plöckinger. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Jane Jr., R. M. Starke, M. A. Elzoghby et al., “Endoscopic transsphenoidal surgery for acromegaly: remission using modern criteria, complications, and predictors of outcome,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. 2732–2740, 2011. View at Publisher · View at Google Scholar
  2. T. Abe and D. K. Lüdecke, “Recent primary transnasal surgical outcomes associated with intraoperative growth hormone measurement in acromegaly,” Clinical Endocrinology, vol. 50, no. 1, pp. 27–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. P. G. Campbell, E. Kenning, D. W. Andrews, S. Yadla, M. Rosen, and J. J. Evans, “Outcomes after a purely endoscopic transsphenoidal resection of growth hormone-secreting pituitary adenomas,” Neurosurgical Focus, vol. 29, no. 4, p. E5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. N. J. L. Gittoes, M. C. Sheppard, A. P. Johnson, and P. M. Stewart, “Outcome of surgery for acromegaly—the experience of a dedicated pituitary surgeon,” QJM, vol. 92, no. 12, pp. 741–745, 1999. View at Google Scholar · View at Scopus
  5. A. Giustina, A. Barkan, F. F. Casanueva et al., “Criteria for cure of acromegaly: a consensus statement,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 2, pp. 526–529, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Kim, H. D. Jang, and O. L. Kim, “Surgical results of growth hormone-secreting pituitary adenoma,” Journal of Korean Neurosurgical Society, vol. 45, no. 5, pp. 271–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. U. Freda, K. D. Post, J. S. Powell, and S. L. Wardlaw, “Evaluation of disease status with sensitive measures of growth hormone secretion in 60 postoperative patients with acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 11, pp. 3808–3816, 1998. View at Google Scholar · View at Scopus
  8. K. Laurence, M. Cook David, and H. Hamrahian Amir, “American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the Diagnosis and Treatment of Acromegaly—2011 update,” Endocrine Practice, vol. 17, supplement 4, pp. 2–44, 2011. View at Google Scholar
  9. D. K. Lüdecke and T. Abe, “Transsphenoidal microsurgery for newly diagnosed acromegaly: a personal view after more than 1,000 operations,” Neuroendocrinology, vol. 83, no. 3-4, pp. 230–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Nomikos, M. Buchfelder, and R. Fahlbusch, “The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’,” European Journal of Endocrinology, vol. 152, no. 3, pp. 379–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. De, D. A. Rees, N. Davies et al., “Transsphenoidal surgery for acromegaly in Wales: results based on stringent criteria of remission,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 8, pp. 3567–3572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Hattori, A. Shimatsu, Y. Kato et al., “Growth hormone responses to oral glucose loading measured by highly sensitive enzyme immunoassay in normal subjects and patients with glucose intolerance and acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 70, no. 3, pp. 771–776, 1990. View at Google Scholar · View at Scopus
  13. A. M. Arafat, M. Möhlig, M. O. Weickert et al., “Growth hormone response during oral glucose tolerance test: the impact of assay method on the estimation of reference values in patients with acromegaly and in healthy controls, and the role of gender, age, and body mass index,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 4, pp. 1254–1262, 2008. View at Publisher · View at Google Scholar
  14. C. Beauregard, U. Truong, J. Hardy, and O. Serri, “Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly,” Clinical Endocrinology, vol. 58, no. 1, pp. 86–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. L. Espinosa-De-Los-Monteros, E. Sosa, S. Cheng et al., “Biochemical evaluation of disease activity after pituitary surgery in acromegaly: a critical analysis of patients who spontaneously change disease status,” Clinical Endocrinology, vol. 64, no. 3, pp. 245–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Carmichael, V. S. Bonert, J. M. Mirocha, and S. Melmed, “The utility of oral glucose tolerance testing for diagnosis and assessment of treatment outcomes in 166 patients with acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 2, pp. 523–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. U. Freda, C. M. Reyes, A. T. Nuruzzaman, R. E. Sundeen, and J. N. Bruce, “Basal and glucose-suppressed GH levels less than 1 μg/L in newly diagnosed acromegaly,” Pituitary, vol. 6, no. 4, pp. 175–180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Giustina, P. Chanson, M. D. Bronstein et al., “A consensus on criteria for cure of acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3141–3148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Bonert, “4 diagnostic challenges in acromegaly: a case-based review,” Best Practice and Research, vol. 23, supplement 1, pp. S23–S30, 2009. View at Publisher · View at Google Scholar
  20. S. Gullu, H. Keles, T. Delibasi, V. Tonyukuk, N. Kamel, and G. Erdogan, “Remission criteria for the follow-up of patients with acromegaly,” European Journal of Endocrinology, vol. 150, no. 4, pp. 465–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. S. Bates, W. Van't Hoff, J. M. Jones, and R. N. Clayton, “An audit of outcome of treatment in acromegaly,” Quarterly Journal of Medicine, vol. 86, no. 5, pp. 293–299, 1993. View at Google Scholar · View at Scopus
  22. S. M. Orme, R. J. Q. Mcnally, R. A. Cartwright, and P. E. Belchetz, “Mortality and cancer incidence in acromegaly: a retrospective cohort study,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 8, pp. 2730–2734, 1998. View at Publisher · View at Google Scholar
  23. I. M. Holdaway, C. R. Rajasoorya, G. D. Gamble, and A. W. Stewart, “Long-term treatment outcome in acromegaly,” Growth Hormone and IGF Research, vol. 13, no. 4, pp. 185–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Klibanski, S. Melmed, D. R. Clemmons et al., “The endocrine tumor summit 2008: appraising therapeutic approaches for acromegaly and carcinoid syndrome,” Pituitary, vol. 13, no. 3, pp. 266–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Badia, S. M. Webb, L. Prieto, and N. Lara, “Acromegaly quality of life questionnaire (AcroQoL),” Health and Quality of Life Outcomes, vol. 2, article no. 13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Webb, L. Prieto, X. Badia et al., “Acromegaly Quality of Life Questionnaire (ACROQOL) a new health-related quality of life questionnaire for patients with acromegaly: development and psychometric properties,” Clinical Endocrinology, vol. 57, no. 2, pp. 251–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. N. Paisley, S. V. Rowles, M. E. Roberts et al., “Treatment of acromegaly improves quality of life, measured by AcroQol,” Clinical Endocrinology, vol. 67, no. 3, pp. 358–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. I. E. Bonapart, R. van Domburg, S. M. T. H. ten Have et al., “The “bio-assay” quality of life might be a better marker of disease activity in acromegalic patients than serum total IGF-I concentrations,” European Journal of Endocrinology, vol. 152, no. 2, pp. 217–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Woodhouse, A. Mukherjee, S. M. Shalet, and S. Ezzat, “The influence of growth hormone status on physical impairments, functional limitations, and health-related quality of life in adults,” Endocrine Reviews, vol. 27, no. 3, pp. 287–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Trepp, R. Everts, C. Stettler et al., “Assessment of quality of life in patients with uncontrolled vs. controlled acromegaly using the acromegaly quality of life questionnaire (AcroQoL),” Clinical Endocrinology, vol. 63, no. 1, pp. 103–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. V. Rowles, L. Prieto, X. Badia, S. M. Shalet, S. M. Webb, and P. J. Trainer, “Quality of life (QOL) in patients with acromegaly is severely impaired: Use of a novel measure of QOL: acromegaly Quality of Life Questionnaire,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 6, pp. 3337–3341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. P. Matta, E. Couture, L. Cazals, D. Vezzosi, A. Bennet, and P. Caron, “Impaired quality of life of patients with acromegaly: control of GH/IGF-I excess improves psychological subscale appearance,” European Journal of Endocrinology, vol. 158, no. 3, pp. 305–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. A. Feelders, M. Bidlingmaier, C. J. Strasburger et al., “Postoperative evaluation of patients with acromegaly: clinical significance and timing of oral glucose tolerance testing and measurement of (free) insulin-like growth factor I, acid-labile subunit, and growth hormone-binding protein levels,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 12, pp. 6480–6489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. L. Espinosa-de-los-Monteros, M. Mercado, E. Sosa et al., “Changing patterns of insulin-like growth factor-I and glucose-suppressed growth hormone levels after pituitary surgery in patients with acromegaly,” Journal of Neurosurgery, vol. 97, no. 2, pp. 287–292, 2002. View at Google Scholar · View at Scopus
  35. P. U. Freda, “Monitoring of acromegaly: what should be performed when GH and IGF-1 levels are discrepant?” Clinical Endocrinology, vol. 71, no. 2, pp. 166–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Melmed, D. Cook, J. Schopohl, M. I. Goth, K. S. L. Lam, and J. Marek, “Rapid and sustained reduction of serum growth hormone and insulin-like growth factor-1 in patients with acromegaly receiving lanreotide Autogel therapy: a randomized, placebo-controlled, multicenter study with a 52 week open extension,” Pituitary, vol. 13, no. 1, pp. 18–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Abosch, J. B. Tyrrell, K. R. Lamborn, L. T. Hannegan, C. B. Applebury, and C. B. Wilson, “Transsphenoidal microsurgery for growth hormone-secreting pituitary adenomas: initial outcome and long-term results,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 10, pp. 3411–3418, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. P. U. Freda, S. L. Wardlaw, and K. D. Post, “Long-term endocrinological follow-up evaluation in 115 patients who underwent transsphenoidal surgery for acromegaly,” Journal of Neurosurgery, vol. 89, no. 3, pp. 353–358, 1998. View at Google Scholar · View at Scopus
  39. P. U. Freda, “Current concepts in the biochemical assessment of the patient with acromegaly,” Growth Hormone and IGF Research, vol. 13, no. 4, pp. 171–184, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Arihara, K. Sakurai, S. Yamada, O. Murakami, and K. Takahashi, “Acromegaly with normal IGF-1 levels probably due to poorly controlled diabetes mellitus,” Tohoku Journal of Experimental Medicine, vol. 216, no. 4, pp. 325–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. R. Peacey, A. A. Toogood, J. D. Veldhuis, M. O. Thorner, and S. M. Shalet, “The relationship between 24-hour growth hormone secretion and insulin-like growth factor I in patients with successfully treated acromegaly: impact of surgery or radiotherapy,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 1, pp. 259–266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Boero, M. Manavela, K. Danilowicz et al., “Comparison of two immunoassays in the determination of IGF-I levels and its correlation with oral glucose tolerance test (OGTT) and with clinical symptoms in acromegalic patients,” Pituitary. In press. View at Publisher · View at Google Scholar
  43. A. C. F. Costa, A. Rossi, E. M. Carlos, H. R. Machado, and A. C. Moreira, “Assessment of disease activity in treated acromegalic patients using a sensitive GH assay: should we achieve strict normal GH levels for a biochemical cure?” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 7, pp. 3142–3147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. E. V. Dimaraki, C. A. Jaffe, R. Demott-Friberg, W. F. Chandler, and A. L. Barkan, “Acromegaly with apparently normal GH secretion: implications for diagnosis and follow-up,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 8, pp. 3537–3542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. N. R. Biermasz, F. W. Dekker, A. M. Pereira et al., “Determinants of survival in treated acromegaly in a single center: predictive value of serial insulin-like growth factor I measurements,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2789–2796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. P. U. Freda, L. Katznelson, A. J. Van Der Lely, C. M. Reyes, S. Zhao, and D. Rabinowitz, “Long-acting somatostatin analog therapy of acromegaly: a meta-analysis,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 8, pp. 4465–4473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. P. U. Freda, A. T. Nuruzzaman, C. M. Reyes, R. E. Sundeen, and K. D. Post, “Significance of “abnormal” nadir growth hormone levels after oral glucose in postoperative patients with acromegaly in remission with normal insulin-like growth factor-I levels,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 495–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Bidlingmaier and P. U. Freda, “Measurement of human growth hormone by immunoassays: current status, unsolved problems and clinical consequences,” Growth Hormone and IGF Research, vol. 20, no. 1, pp. 19–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. L. Derr, S. J. Cameron, and S. H. Golden, “Pre-analytic considerations for the proper assessment of hormones of the hypothalamic-pituitary axis in epidemiological research,” European Journal of Epidemiology, vol. 21, no. 3, pp. 217–226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. P. U. Freda, “Pitfalls in the biochemical assessment of acromegaly,” Pituitary, vol. 6, no. 3, pp. 135–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Rajasoorya, I. M. Holdaway, P. Wrightson, D. J. Scott, and H. K. Ibbertson, “Determinants of clinical outcome and survival in acromegaly,” Clinical Endocrinology, vol. 41, no. 1, pp. 95–102, 1994. View at Google Scholar · View at Scopus
  52. B. Swearingen, F. G. Barker, L. Katznelson et al., “Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 10, pp. 3419–3426, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. P. C. Kao, E. R. Laws Jr., and D. Zimmerman, “Somatomedin C/insulin-like growth factor I levels after treatment of acromegaly,” Annals of Clinical and Laboratory Science, vol. 22, no. 2, pp. 95–99, 1992. View at Google Scholar · View at Scopus
  54. D. Milani, J. D. Carmichael, J. Welkowitz et al., “Variability and reliability of single serum IGF-I measurements: impact on determining predictability of risk ratios in disease development,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 5, pp. 2271–2274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. D. R. Clemmons, “Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays,” Clinical Chemistry, vol. 57, no. 4, pp. 555–559, 2011. View at Publisher · View at Google Scholar
  56. M. Bidlingmaier, “Pitfalls of insulin-like growth factor I assays,” Hormone Research, vol. 71, no. 1, pp. 30–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Brabant, A. Von Zur Mühlen, C. Wüster et al., “Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study,” Hormone Research, vol. 60, no. 2, pp. 53–60, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Brabant, “Insulin-like growth factor-I: marker for diagnosis of acromegaly and monitoring the efficacy of treatment,” European Journal of Endocrinology, Supplement, vol. 148, no. 2, pp. S15–S20, 2003. View at Google Scholar · View at Scopus
  59. J. Frystyk, P. Freda, and D. R. Clemmons, “The current status of IGF-I assays—a 2009 update,” Growth Hormone and IGF Research, vol. 20, no. 1, pp. 8–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. N. Paisley, K. Hayden, A. Ellis, J. Anderson, G. Wieringa, and P. J. Trainer, “Pegvisomant interference in GH assays results in underestimation og GH levels,” European Journal of Endocrinology, vol. 156, no. 3, pp. 315–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Melmed, A. Colao, A. Barkan et al., “Guidelines for acromegaly management: an update,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. S. W. J. Lamberts, A. J. van der Lely, and L. J. Hofland, “New somatostatin analogs: will they fulfil old promises?” European Journal of Endocrinology, vol. 146, no. 5, pp. 701–705, 2002. View at Google Scholar · View at Scopus
  63. U. Ploeckinger, U. Hoffmann, M. Geese et al., “DG3173 (Somatoprim), a unique Somatostatin receptor subtype 2-, 4- and 5-selective analogue, effectively reduces GH-secretion in human growth hormone secreting pituitary adenomas even in Octreotide non-responsive tumours,” European Journal of Endocrinology, vol. 166, no. 2, pp. 223–234, 2012. View at Google Scholar
  64. A. Lupp, A. Hunder, A. Petrich, F. Nagel, C. Doll, and S. Schulz, “Reassessment of sst5 somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4,” Neuroendocrinology, vol. 94, no. 3, pp. 255–264, 2011. View at Publisher · View at Google Scholar
  65. T. Fischer, C. Doll, S. Jacobs, A. Kolodziej, R. Stumm, and S. Schulz, “Reassessment of sst2 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-1,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4519–4524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. U. Plöckinger, S. Albrecht, C. Mawrin et al., “Selective loss of somatostatin receptor 2 in octreotide-resistant growth hormone-secreting adenomas,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 4, pp. 1203–1210, 2008. View at Publisher · View at Google Scholar
  67. M. Pfeiffer, T. Koch, H. Schröder et al., “Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst3 receptor function by heterodimerization with sst2A,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 14027–14036, 2001. View at Google Scholar · View at Scopus
  68. M. Grant and U. Kumar, “The role of G-proteins in the dimerisation of human somatostatin receptor types 2 and 5,” Regulatory Peptides, vol. 159, no. 1–3, pp. 3–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Dasgupta, “Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis,” Pharmacology and Therapeutics, vol. 102, no. 1, pp. 61–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. H. E. Turner, Z. Nagy, K. C. Gatter, M. M. Esiri, A. L. Harris, and J. A. H. Wass, “Angiogenesis in pituitary adenomas and the normal pituitary gland,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1159–1162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. H. E. Turner, Z. Nagy, K. C. Gatter, M. M. Esiri, A. L. Harris, and J. A. H. Wass, “Angiogenesis in pituitary adenomas–relationship to endocrine function, treatment and outcome,” Journal of Endocrinology, vol. 165, no. 2, pp. 475–481, 2000. View at Google Scholar · View at Scopus
  72. A. E. M. Smals, G. F. F. M. Pieters, A. G. H. Smals, and P. W. C. Kloppenborg, “Sex difference in the relation between sellar volume and basal and GH-releasing hormone stimulated GH in acromegaly,” Acta Endocrinologica, vol. 117, no. 3, pp. 387–391, 1988. View at Google Scholar · View at Scopus
  73. J. G. M. Klijn, S. W. J. Lamberts, and F. H. De Jong, “Interrelationships between tumour size, age, plasma growth hormone and incidence of extrasellar extension in acromegalic patients,” Acta Endocrinologica, vol. 95, no. 3, pp. 289–297, 1980. View at Google Scholar
  74. R. Barrie, E. A. Woltering, H. Hajarizadeh, C. Mueller, T. Ure, and W. S. Fletcher, “Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent,” Journal of Surgical Research, vol. 55, no. 4, pp. 446–450, 1993. View at Publisher · View at Google Scholar · View at Scopus
  75. S. W. J. Lamberts, A. J. Van der Lely, W. W. De Herder, and L. J. Hofland, “Octreotide,” New England Journal of Medicine, vol. 334, no. 4, pp. 246–254, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. H. J. Quabbe and U. Plockinger, “Dose-response study and long term effect of the somatostatin analog octreotide in patients with therapy-resistant acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 68, no. 5, pp. 873–881, 1989. View at Google Scholar · View at Scopus
  77. M. L. Vance and A. G. Harris, “Long-term treatment of 189 acromegalic patients with the somatostatin analog octreotide: results of the International Multicenter Acromegaly Study Group,” Archives of Internal Medicine, vol. 151, no. 8, pp. 1573–1578, 1991. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Ezzat, P. J. Snyder, W. F. Young et al., “Octreotide treatment of acromegaly: a randomized, multicenter study,” Annals of Internal Medicine, vol. 117, no. 9, pp. 711–718, 1992. View at Google Scholar · View at Scopus
  79. I. Lancranjan and A. B. Atkinson, “Results of a European multicentre study with Sandostatin LAR in acromegalic patients,” Pituitary, vol. 1, no. 2, pp. 105–114, 1999. View at Google Scholar · View at Scopus
  80. P. U. Freda, “Somatostatin analogs in acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 7, pp. 3013–3018, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Schopohl, C. J. Strasburger, D. Caird et al., “Efficacy and acceptability of lanreotide autogel 120 mg at different dose intervals in patients with acromegaly previously treated with octreotide LAR,” Experimental and Clinical Endocrinology and Diabetes, vol. 119, no. 3, pp. 156–162, 2011. View at Publisher · View at Google Scholar
  82. S. W. van Thiel, J. A. Romijn, N. R. Biermasz et al., “Octreotide long-acting repeatable and lanreotide Autogel are equally effective in controlling growth hormone secretion in acromegalic patients,” European Journal of Endocrinology, vol. 150, no. 4, pp. 489–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Colao, R. S. Auriemma, M. Galdiero, G. Lombardi, and R. Pivonello, “Effects of initial therapy for five years with somatostatin analogs for acromegaly on growth hormone and insulin-like growth factor-I levels, tumor shrinkage, and cardiovascular disease: a prospective study,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 10, pp. 3746–3756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. D. Murray and S. Melmed, “A critical analysis of clinically available somatostatin analog formulations for therapy of acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 8, pp. 2957–2968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Hradec, J. Kral, T. Janota et al., “Regression of acromegalic left ventricular hypertrophy after lanreotide (a slow-release somatostatin analog),” American Journal of Cardiology, vol. 83, no. 10, pp. 1506–1509, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Colao, P. Marzullo, D. Ferone et al., “Prostatic hyperplasia: an unknown feature of acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, pp. 775–779, 1998. View at Publisher · View at Google Scholar
  87. A. Colao, P. Marzullo, S. Spiezia et al., “Effect of growth hormone (GH) and insulin-like growth factor I on prostate diseases: an ultrasonographic and endocrine study in acromegaly, GH deficiency, and healthy subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 6, pp. 1986–1991, 1999. View at Google Scholar · View at Scopus
  88. R. R. Grunstein, K. Y. Ho, and C. E. Sullivan, “Sleep apnea in acromegaly,” Annals of Internal Medicine, vol. 115, no. 7, pp. 527–532, 1991. View at Google Scholar · View at Scopus
  89. M. S. M. Ip, K. C. B. Tan, W. C. G. Peh, and K. S. L. Lam, “Effect of Sandostatin LAR on sleep apnoea in acromegaly: correlation with computerized tomographic cephalometry and hormonal activity,” Clinical Endocrinology, vol. 55, no. 4, pp. 477–483, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. R. R. Grunstein, K. K. Y. Ho, and C. E. Sullivan, “Effect of octreotide, a somatostatin analog, on sleep apnea in patients with acromegaly,” Annals of Internal Medicine, vol. 121, no. 7, pp. 478–483, 1994. View at Google Scholar · View at Scopus
  91. R. S. Auriemma, M. Galdiero, M. C. De Martino et al., “The kidney in acromegaly: renal structure and function in patients with acromegaly during active disease and 1 year after disease remission,” European Journal of Endocrinology, vol. 162, no. 6, pp. 1035–1042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. U. Plöckinger, J. J. Holst, D. Messerschmidt, W. Hopfenmüller, and H. -J. Quabbe, “Octreotide suppresses the incretin glucagon-like peptide (7–36) amide in patients with acromegaly or clinically nonfunctioning pituitary tumors and in healthy subjects,” European Journal of Endocrinology, vol. 140, no. 6, pp. 538–544, 1999. View at Publisher · View at Google Scholar
  93. H. J. Quabbe and U. Plöckinger, “Metabolic aspects of acromegaly and its treatment,” Metabolism: Clinical and Experimental, vol. 45, no. 1, pp. 61–62, 1996. View at Google Scholar · View at Scopus
  94. A. Colao, R. S. Auriemma, M. Galdiero et al., “Impact of somatostatin analogs versus surgery on glucose metabolism in acromegaly: results of a 5-year observational, open, prospective study,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 2, pp. 528–537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Colao, R. S. Auriemma, S. Savastano et al., “Glucose tolerance and somatostatin analog treatment in acromegaly: a 12-month study,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 8, pp. 2907–2914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Arosio, S. Macchelli, C. M. Rossi, G. Casati, O. Biella, and G. Faglia, “Effects of treatment with octreotide in acromegalic patients—a multicenter Italian study,” European Journal of Endocrinology, vol. 133, no. 4, pp. 430–439, 1995. View at Google Scholar
  97. U. Plockinger, D. Dienemann, and H. J. Quabbe, “Gastrointestinal side-effects of octreotide during long term treatment of acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 71, no. 6, pp. 1658–1662, 1990. View at Google Scholar · View at Scopus
  98. U. Plöckinger, A. Perez-Canto, C. Emde, R.-M. Liehr, W. Hopfenmüller, and H.-J. Quabbe, “Effect of the somatostatin analog octreotide on gastric mucosal function and histology during 3 months of preoperative treatment in patients with acromegaly,” European Journal of Endocrinology, vol. 139, no. 4, pp. 387–394, 1998. View at Publisher · View at Google Scholar
  99. J. A. Gilbert, J. P. Miell, S. M. Chambers, A. M. McGregor, and S. J. B. Aylwin, “The nadir growth hormone after an octreotide test dose predicts the long-term efficacy of somatostatin analogue therapy in acromegaly,” Clinical Endocrinology, vol. 62, no. 6, pp. 742–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. J. R. Lindsay, E. M. McConnell, S. J. Hunter, D. R. McCance, B. Sheridan, and A. B. Atkinson, “Poor responses to a test dose of subcutaneous octreotide predict the need for adjuvant therapy to achieve “safe” growth hormone levels,” Pituitary, vol. 7, no. 3, pp. 139–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. N. Karavitaki, I. Botusan, S. Radian, M. Coculescu, H. E. Turner, and J. A. H. Wass, “The value of an acute octreotide suppression test in predicting long-term responses to depot somatostatin analogues in patients with active acromegaly,” Clinical Endocrinology, vol. 62, no. 3, pp. 282–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. W. W. de Herder, H. R. Taal, P. Uitterlinden, R. A. Feelders, J. A. M. J. L. Janssen, and A. J. van der Lely, “Limited predictive value of an acute test with subcutaneous octreotide for long-term IGF-I normalization with Sandostatin LAR in acromegaly,” European Journal of Endocrinology, vol. 153, no. 1, pp. 67–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. U. Plockinger, M. Bader, W. Hopfenmuller, W. Saeger, and H. J. Quabbe, “Results of somatostatin receptor scintigraphy do not predict pituitary tumor volume- and hormone-response to ocreotide therapy and do not correlate with tumor histology,” European Journal of Endocrinology, vol. 136, no. 4, pp. 369–376, 1997. View at Google Scholar
  104. H. J. Quabbe, “Treatment of acromegaly by trans-sphenoidal operation, 90-yttrium implantation and bromocriptine: results in 230 patients,” Clinical Endocrinology, vol. 16, no. 2, pp. 107–119, 1982. View at Google Scholar · View at Scopus
  105. R. Fahlbusch, J. Honegger, and M. Buchfelder, “Surgical management of acromegaly,” Endocrinology and Metabolism Clinics of North America, vol. 21, no. 3, pp. 669–692, 1992. View at Google Scholar
  106. G. T. Tindall, N. M. Oyesiku, N. B. Watts, R. V. Clark, J. H. Christy, and D. A. Adams, “Transsphenoidal adenomectomy for growth hormone-secreting pituitary adenomas in acromegaly: outcome analysis and determinants of failure,” Journal of Neurosurgery, vol. 78, no. 2, pp. 205–215, 1993. View at Google Scholar · View at Scopus
  107. J. A. Gondim, J. P. Almeida, L. A. F. de Albuquerque, E. Gomes, M. Schops, and T. Ferraz, “Pure endoscopic transsphenoidal surgery for treatment of acromegaly: results of 67 cases treated in a pituitary center,” Neurosurgical Focus, vol. 29, no. 4, p. E7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Melmed, R. Sternberg, D. Cook et al., “A critical analysis of pituitary tumor shrinkage during primary medical therapy in acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4405–4410, 2005. View at Publisher · View at Google Scholar
  109. P. Lundin and F. Pedersen, “Volume of pituitary macroadenomas: assessment by MRI,” Journal of Computer Assisted Tomography, vol. 16, no. 4, pp. 519–528, 1992. View at Google Scholar · View at Scopus
  110. S. Ezzat, E. Horvath, A. G. Harris, and K. Kovacs, “Morphological effects of octreotide on growth hormone-producing pituitary adenomas,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 1, pp. 113–118, 1994. View at Publisher · View at Google Scholar
  111. S. R. George, K. Kovacs, and S. L. Asa, “Effect of SMS 201-995, a long-acting somatostatin analogue, on the secretion and morphology of a pituitary growth hormone cell adenoma,” Clinical Endocrinology, vol. 26, no. 4, pp. 395–405, 1987. View at Google Scholar
  112. D. Sautner, W. Saeger, G. Tallen, D. K. Ludecke, and W. Rehpenning, “Effects of octreotide on morphology of pituitary adenomas in acromegaly,” Pathology Research and Practice, vol. 189, no. 9, pp. 1044–1051, 1993. View at Google Scholar · View at Scopus
  113. M. Losa, E. Ciccarelli, P. Mortini et al., “Effects of octreotide treatment on the proliferation and apoptotic index of GH-secreting pituitary adenomas,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5194–5200, 2001. View at Publisher · View at Google Scholar
  114. K. Thapar, K. T. Kovacs, L. Stefaneanu et al., “Antiproliferative effect of the somatostatin analogue octreotide on growth hormone-producing pituitary tumors: results of a multicenter randomized trial,” Mayo Clinic Proceedings, vol. 72, no. 10, pp. 893–900, 1997. View at Google Scholar
  115. U. Plockinger, M. Reichel, U. Fett, W. Saeger, and H.-J. Quabbe, “Preoperative octreotide treatment of growth hormone-secreting and clinically nonfunctioning pituitary macroadenomas: effect on tumor volume and lack of correlation with immunohistochemistry and somatostatin receptor scintigraphy,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 5, pp. 1416–1423, 1994. View at Publisher · View at Google Scholar
  116. S. Barakat and S. Melmed, “Reversible shrinkage of a growth hormone-secreting pituitary adenoma by a long-acting somatostatin analogue, octreotide,” Archives of Internal Medicine, vol. 149, no. 6, pp. 1443–1445, 1989. View at Google Scholar · View at Scopus
  117. J. S. Bevan, “The antitumoral effects of somatostatin analog therapy in acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1856–1863, 2005. View at Publisher · View at Google Scholar
  118. R. Cozzi, R. Attanasio, M. Montini et al., “Four-year treatment with octreotide-long-acting repeatable in 110 acromegalic patients: predictive value of short-term results?” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3090–3098, 2003. View at Publisher · View at Google Scholar
  119. A. Colao, D. Ferone, P. Marzullo et al., “Long-term effects of depot long-acting somatostatin analog octreotide on hormone levels and tumor mass in acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 6, pp. 2779–2786, 2001. View at Publisher · View at Google Scholar
  120. A. L. Barkan, R. V. Lloyd, W. F. Chandler et al., “Preoperative treatment of acromegaly with long-acting somatostatin analog SMS 201-995: shrinkage of invasive pituitary macroadenomas and improved surgical remission rate,” Journal of Clinical Endocrinology and Metabolism, vol. 67, no. 5, pp. 1040–1048, 1988. View at Google Scholar
  121. T. Lucas-Morante, J. Garcia-Uria, J. Estrada et al., “Treatment of invasive growth hormone pituitary adenomas with long-acting somatostatin analog SMS 201-995 before transsphenoidal surgery,” Journal of Neurosurgery, vol. 81, no. 1, pp. 10–14, 1994. View at Google Scholar · View at Scopus
  122. A. Colao, D. Ferone, P. Cappabianca et al., “Effect of octreotide pretreatment on surgical outcome in acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 10, pp. 3308–3314, 1997. View at Publisher · View at Google Scholar
  123. A. Stevenaert and A. Beckers, “Presurgical octreotide: treatment in acromegaly,” Metabolism: Clinical and Experimental, vol. 45, no. 1, pp. 72–74, 1996. View at Google Scholar · View at Scopus
  124. T. Abe and D. K. Lüdecke, “Effects of preoperative octreotide treatment on different subtypes of 90 GH-secreting pituitary adenomas and outcome in one surgical centre,” European Journal of Endocrinology, vol. 145, no. 2, pp. 137–145, 2001. View at Google Scholar
  125. N. R. Biermasz, H. Van Dulken, and F. Roelfsema, “Direct postoperative and follow-up results of transsphenoidal surgery in 19 acromegalic patients pretreated with octreotide compared to those in untreated matched controls,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3551–3555, 1999. View at Google Scholar
  126. U. Plöckinger and H.-J. Quabbe, “Presurgical octreotide treatment in acromegaly: no improvement of final growth hormone (GH) concentration and pituitary function. A long-term case-control study,” Acta Neurochirurgica, vol. 147, no. 5, pp. 485–493, 2005. View at Publisher · View at Google Scholar
  127. M. Losa, P. Mortini, L. Urbaz, P. Ribotto, T. Castrignanò, and M. Giovanelli, “Presurgical treatment with somatostatin analogs in patients with acromegaly: effects on the remission and complication rates,” Journal of Neurosurgery, vol. 104, no. 6, pp. 899–906, 2006. View at Publisher · View at Google Scholar
  128. R. A. Kristof, B. Stoffel-Wagner, D. Klingmüller, and J. Schramm, “Does octreotide treatment improve the surgical results of macro-adenomas in acromegaly? A randomized study,” Acta Neurochirurgica, vol. 141, no. 4, pp. 399–405, 1999. View at Publisher · View at Google Scholar
  129. S. M. Carlsen, M. Lund-Johansen, T. Schreiner et al., “Preoperative octreotide treatment in newly diagnosed acromegalic patients with macroadenomas increases cure short-term postoperative rates: a prospective, randomized trial,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 8, pp. 2984–2990, 2008. View at Publisher · View at Google Scholar
  130. Z. G. Mao, Y. H. Zhu, H. L. Tang et al., “Preoperative lanreotide treatment in acromegalic patients with macroadenomas increases short-term postoperative cure rates: a prospective, randomised trial,” European Journal of Endocrinology, vol. 162, no. 4, pp. 661–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Colao, “The importance of presurgical somatostatin analogue therapy in acromegaly,” Endokrynologia Polska, vol. 58, no. 4, pp. 356–360, 2007. View at Google Scholar · View at Scopus
  132. A. Ben-Shlomo and S. Melmed, “Clinical review 154: the role of pharmacotherapy in perioperative management of patients with acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 3, pp. 963–968, 2003. View at Publisher · View at Google Scholar
  133. Z. M. Bush and M. L. Vance, “Management of acromegaly: is there a role for primary medical therapy?” Reviews in Endocrine and Metabolic Disorders, vol. 9, no. 1, pp. 83–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Ayuk, S. E. Stewart, P. M. Stewart, and M. C. Sheppard, “Long-term safety and efficacy of depot long-acting somatostatin analogs for the treatment of acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 9, pp. 4142–4146, 2002. View at Publisher · View at Google Scholar
  135. C. B. Newman, S. Melmed, A. George et al., “Octreotide as primary therapy for acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 9, pp. 3034–3040, 1998. View at Publisher · View at Google Scholar
  136. R. Baldelli, A. Colao, P. Razzore et al., “Two-year follow-up of acromegalic patients treated with slow release lanreotide (30 mg),” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 11, pp. 4099–4103, 2000. View at Publisher · View at Google Scholar
  137. M. Kurosaki, D. K. Lüdecke, J. Flitsch, and W. Saeger, “Surgical treatment of clinically nonsecreting pituitary adenomas in elderly patients,” Neurosurgery, vol. 47, no. 4, pp. 843–849, 2000. View at Google Scholar
  138. C. Bruns, I. Lewis, U. Briner, G. Meno-Tetang, and G. Weckbecker, “SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile,” European Journal of Endocrinology, vol. 146, no. 5, pp. 707–716, 2002. View at Google Scholar · View at Scopus
  139. G. Weckbecker, U. Briner, I. Lewis, and C. Bruns, “SOM230: a new somatostatin peptidomimetic with potent inhibitory effects on the growth hormone/insulin-like growth factor-I axis in rats, primates, and dogs,” Endocrinology, vol. 143, no. 10, pp. 4123–4130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Van Der Hoek, W. W. De Herder, R. A. Feelders et al., “A single-dose comparison of the acute effects between the new Somatostatin analog SOM230 and octreotide in acromegalic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 638–645, 2004. View at Publisher · View at Google Scholar
  141. S. Petersenn, J. Schopohl, A. Barkan et al., “Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a randomized, multicenter, phase II trial,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 2781–2789, 2010. View at Publisher · View at Google Scholar
  142. M. Afargan, E. T. Janson, G. Gelerman et al., “Novel long-acting somatostatin analog with endocrine selectivity: potent suppression of growth hormone but not of insulin,” Endocrinology, vol. 142, no. 1, pp. 477–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. I. Shimon, T. Rubinek, M. Hadani, and N. Alhadef, “PTR-3173 (Somatoprim), a novel somatostatin analog with affinity for somatostatin receptors 2, 4 and 5 is a potent inhibitor of human GH secretion,” Journal of Endocrinological Investigation, vol. 27, no. 8, pp. 721–727, 2004. View at Google Scholar
  144. P. Jaquet, G. Gunz, A. Saveanu et al., “BIM-23A760, a chimeric molecule directed towards somatostatin and dopamine receptors, vs universal somatostatin receptors ligands in GH-secreting pituitary adenomas partial responders to octreotide,” Journal of Endocrinological Investigation, vol. 28, no. 11 Suppl, pp. 21–27, 2005. View at Google Scholar
  145. P. Jaquet, G. Gunz, A. Saveanu et al., “Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy,” European Journal of Endocrinology, vol. 153, no. 1, pp. 135–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. L. J. Hofland, R. A. Feelders, W. W. de Herder, and S. W. J. Lamberts, “Pituitary tumours: the sst/D2 receptors as molecular targets,” Molecular and Cellular Endocrinology, vol. 326, no. 1-2, pp. 89–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Liuzzi, P. G. Chiodini, L. Botalla, G. Cremascoli, and F. Silvestrini, “Inhibitory effect of L-Dopa on GH release in acromegalic patients,” Journal of Clinical Endocrinology and Metabolism, vol. 35, no. 6, pp. 941–943, 1972. View at Google Scholar
  148. R. Abs, J. Verhelst, D. Maiter et al., “Cabergoline in the treatment of acromegaly: a study in 64 patients,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 2, pp. 374–378, 1998. View at Publisher · View at Google Scholar
  149. P. U. Freda, C. M. Reyes, A. T. Nuruzzaman, R. E. Sundeen, A. G. Khandji, and K. D. Post, “Cabergoline therapy of growth hormone & growth hormone/prolactin secreting pituitary tumors,” Pituitary, vol. 7, no. 1, pp. 21–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. A. Colao, D. Ferone, P. Marzullo et al., “Effect of different dopaminergic agents in the treatment of acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 2, pp. 518–523, 1997. View at Publisher · View at Google Scholar
  151. L. Sandret, P. Maison, and P. Chanson, “Place of cabergoline in acromegaly: a meta-analysis,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 5, pp. 1327–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. M. S. Venetikou, J. M. Burrin, C. A. Woods, T. H. Yeo, J. Brownell, and E. F. Adams, “Effects of two novel dopaminergic drugs, CV 205-502 and CQP 201-403, on prolactin and growth hormone secretion by human pituitary tumours in vitro,” Acta Endocrinologica, vol. 116, no. 2, pp. 287–292, 1987. View at Google Scholar
  153. P. G. Chiodini, R. Attanasio, R. Cozzi et al., “CV 205-502 in acromegaly,” Acta Endocrinologica, vol. 128, no. 5, pp. 389–393, 1993. View at Google Scholar
  154. T. Svoboda, H. Kotzmann, M. Clodi, P. Bernecker, G. Geyer, and A. Luger, “The non ergot D2-dopamine agonist cv 205-502 decreases growth hormone concentrations in acromegalic patients,” Endocrine Research, vol. 20, no. 1, pp. 59–63, 1994. View at Google Scholar · View at Scopus
  155. P. Jaquet, “CV 205-502: a more effective dopamine agonist m the treatment of acromegaly?” European Journal of Endocrinology, vol. 132, no. 5, pp. 557–558, 1995. View at Google Scholar · View at Scopus
  156. G. Lombardi, A. Colao, D. Ferone et al., “CV 205-502 treatment in therapy-resistant acromegalic patients,” European Journal of Endocrinology, vol. 132, no. 5, pp. 559–564, 1995. View at Google Scholar · View at Scopus
  157. G. Minniti, M. L. Jaffrain-Rea, R. Baldelli et al., “Acute effects of octreotide, cabergoline and a combination of both drugs on GH secretion in acromegalic patients,” Clinica Terapeutica, vol. 148, no. 12, pp. 601–607, 1997. View at Google Scholar · View at Scopus
  158. P. Marzullo, D. Ferone, C. Di Somma et al., “Efficacy of combined treatment with lanreotide and cabergoline in selected therapy-resistant acromegalic patients,” Pituitary, vol. 1, no. 2, pp. 115–120, 1999. View at Google Scholar · View at Scopus
  159. R. Cozzi, R. Attanasio, S. Lodrini, and G. Lasio, “Cabergoline addition to depot somatostatin analogues in resistant acromegalic patients: efficacy and lack of predictive value of prolactin status,” Clinical Endocrinology, vol. 61, no. 2, pp. 209–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. B. Gatta, D. H. Hau, B. Catargi, P. Roger, and A. Tabarin, “Re-evaluation of the efficacy of the association of cabergoline to somatostatin analogues in acromegalic patients,” Clinical Endocrinology, vol. 63, no. 4, pp. 477–478, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. D. Selvarajah, J. Webster, R. Ross, and J. Newell-Price, “Effectiveness of adding dopamine agonist therapy to long-acting somatostatin analogues in the management of acromegaly,” European Journal of Endocrinology, vol. 152, no. 4, pp. 569–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. R. S. Jallad and M. D. Bronstein, “Optimizing medical therapy of acromegaly: beneficial effects of cabergoline in patients uncontrolled with long-acting release octreotide,” Neuroendocrinology, vol. 90, no. 1, pp. 82–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. P. Mattar, M. R. Alves Martins, and J. Abucham, “Short-and long-term efficacy of combined cabergoline and octreotide treatment in controlling IGF-I levels in acromegaly,” Neuroendocrinology, vol. 92, no. 2, pp. 120–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. S. Vallette, K. Serri, J. Rivera et al., “Long-term cabergoline therapy is not associated with valvular heart disease in patients with prolactinomas,” Pituitary, vol. 12, no. 3, pp. 153–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. M. Kars, V. Delgado, E. R. Holman et al., “Aortic valve calcification and mild tricuspid regurgitation but no clinical heart disease after 8 years of dopamine agonist therapy for prolactinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3348–3356, 2008. View at Publisher · View at Google Scholar
  166. J. J. Kopchick and J. M. Andry, “Growth hormone (GH), GH receptor, and signal transduction,” Molecular Genetics and Metabolism, vol. 71, no. 1-2, pp. 293–314, 2000. View at Publisher · View at Google Scholar · View at Scopus
  167. R. J. M. Ross, K. C. Leung, M. Maamra et al., “Binding and functional studies with the growth hormone receptor antagonist, B2036-PEG (pegvisomant), reveal effects of pegylation and evidence that it binds to a receptor dimer,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 4, pp. 1716–1723, 2001. View at Publisher · View at Google Scholar
  168. W. Y. Chen, D. C. Wight, B. V. Mehta, T. E. Wagner, and J. J. Kopchick, “Glycine 119 of bovine growth hormone is critical for growth-promoting activity,” Molecular Endocrinology, vol. 5, no. 12, pp. 1845–1852, 1991. View at Google Scholar · View at Scopus
  169. J. J. Kopchick, “Discovery and development of a new class of drugs: GH antagonists,” Journal of Endocrinological Investigation, vol. 26, supplement 10, pp. 16–26, 2003. View at Google Scholar
  170. S. Jehle, C. M. Reyes, R. E. Sundeen, and P. U. Freda, “Alternate-day administration of pegvisomant maintains normal serum insulin-like growth factor-I levels in patients with acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1588–1593, 2005. View at Publisher · View at Google Scholar
  171. C. Muto, K. Chiba, and T. Suwa, “Population pharmacokinetic and pharmacodynamic modeling of pegvisomant in Asian and Western acromegaly patients,” Journal of Clinical Pharmacology, vol. 51, no. 12, pp. 1628–1643, 2011. View at Publisher · View at Google Scholar
  172. J. D. Veldhuis, M. Bidlingmaier, J. Bailey, D. Erickson, and P. Sandroni, “A pegylated growth hormone receptor antagonist, pegvisomant, does not enter the brain in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 8, pp. 3844–3847, 2010. View at Publisher · View at Google Scholar
  173. S. J. Neggers, J. J. Kopchick, J. O. L. Jørgensen, and A. J. Van Der Lely, “Hypothesis: extra-hepatic acromegaly: a new paradigm?” European Journal of Endocrinology, vol. 164, no. 1, pp. 11–16, 2011. View at Publisher · View at Google Scholar
  174. U. Plöckinger and T. Reuter, “Pegvisomant increases intra-abdominal fat in patients with acromegaly: a pilot study,” European Journal of Endocrinology, vol. 158, no. 4, pp. 467–471, 2008. View at Publisher · View at Google Scholar
  175. A. F. Muller, J. A. Janssen, L. J. Hofland et al., “Blockade of the growth hormone (GH) receptor unmasks rapid GH-releasing peptide-6-mediated tissue-specific insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 2, pp. 590–593, 2001. View at Publisher · View at Google Scholar
  176. P. J. Trainer, W. M. Drake, L. Katznelson et al., “Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant,” New England Journal of Medicine, vol. 342, no. 16, pp. 1171–1177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  177. A. J. Van Der Lely, R. K. Hutson, P. J. Trainer et al., “Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist,” Lancet, vol. 358, no. 9295, pp. 1754–1759, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. J. Feenstra, W. W. De Herder, S. M. T. H. Ten Have et al., “Combined therapy with somatostatin analogues and weekly pegvisomant in active acromegaly,” Lancet, vol. 365, no. 9471, pp. 1644–1646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  179. E. Ghigo, B. M. K. Biller, A. Colao et al., “Comparison of pegvisomant and long-acting octreotide in patients with acromegaly naïve to radiation and medical therapy,” Journal of Endocrinological Investigation, vol. 32, no. 11, pp. 924–933, 2009. View at Publisher · View at Google Scholar
  180. A. Luger, U. Feldt-Rasmussen, R. Abs et al., “Lessons learned from 15 years of KIMS and 5 years of ACROSTUDY,” Hormone Research in Paediatrics, vol. 76, supplement 1, pp. 33–38, 2011. View at Publisher · View at Google Scholar
  181. I. Bernabeu, C. Alvarez-Escolá, C. Quinteiro et al., “The exon 3-deleted growth hormone receptor is associated with better response to pegvisomant therapy in acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 222–229, 2010. View at Publisher · View at Google Scholar
  182. R. Pivonello, M. Galderisi, R. S. Auriemma et al., “Treatment with growth hormone receptor antagonist in acromegaly: effect on cardiac structure and performance,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 476–482, 2007. View at Publisher · View at Google Scholar
  183. A. Colao, R. Pivonello, R. S. Auriemma et al., “Efficacy of 12-month treatment with the GH receptor antagonist pegvisomant in patients with acromegaly resistant to long-term, high-dose somatostatin analog treatment: Effect on IGF-I levels, tumor mass, hypertension and glucose tolerance,” European Journal of Endocrinology, vol. 154, no. 3, pp. 467–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  184. A. Colao, “Improvement of cardiac parameters in patients with acromegaly treated with medical therapies,” Pituitary, vol. 15, no. 1, pp. 50–58, 2012. View at Publisher · View at Google Scholar
  185. C. Berg, T. E. Wessendorf, F. Mortsch et al., “Influence of disease control with pegvisomant on sleep apnoea and tongue volume in patients with active acromegaly,” European Journal of Endocrinology, vol. 161, no. 6, pp. 829–835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. M. C. De Martino, R. S. Auriemma, G. Brevetti et al., “The treatment with growth hormone receptor antagonist in acromegaly: effect on vascular structure and function in patients resistant to somatostatin analogues,” Journal of Endocrinological Investigation, vol. 33, no. 9, pp. 663–670, 2010. View at Publisher · View at Google Scholar
  187. C. E. Higham, S. Rowles, D. Russell-Jones, A. M. Umpleby, and P. J. Trainer, “Pegvisomant improves insulin sensitivity and reduces overnight free fatty acid concentrations in patients with acromegaly,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 7, pp. 2459–2463, 2009. View at Publisher · View at Google Scholar
  188. C. Jimenez, M. Ayala-Ramirez, J. Liu, R. Nunez, and R. F. Gagel, “Inhibition of growth hormone receptor activation by pegvisomant may increase bone density in acromegaly,” Hormone and Metabolic Research, vol. 43, no. 1, pp. 55–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Bonadonna, G. Mazziotti, M. Nuzzo et al., “Increased prevalence of radiological spinal deformities in active acromegaly: a cross-sectional study in postmenopausal women,” Journal of Bone and Mineral Research, vol. 20, no. 10, pp. 1837–1844, 2005. View at Publisher · View at Google Scholar
  190. S. J. C. M. M. Neggers, M. O. Van Aken, W. W. De Herder et al., “Quality of life in acromegalic patients during long-term somatostatin analog treatment with and without pegvisomant,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 10, pp. 3853–3859, 2008. View at Publisher · View at Google Scholar
  191. M. Buchfelder, D. Weigel, M. Droste et al., “Pituitary tumor size in acromegaly during pegvisomant treatment: experience from MR re-evaluations of the German Pegvisomant Observational Study,” European Journal of Endocrinology, vol. 161, no. 1, pp. 27–35, 2009. View at Publisher · View at Google Scholar
  192. A. Soto Moreno, R. Guerrero Vázquez, E. Venegas Moreno, S. Palma Milla, J. P. Castaño, and A. Leal Cerro, “Self-limited acute hepatotoxicity caused by pegvisomant,” Pituitary, vol. 14, no. 4, pp. 371–376, 2011. View at Publisher · View at Google Scholar
  193. M. Buchfelder, S. Schlaffer, M. Droste et al., “The German ACROSTUDY: past and present,” European Journal of Endocrinology, vol. 161, supplement 1, pp. S3–S10, 2009. View at Publisher · View at Google Scholar
  194. I. Bernabeu, J. Cameselle-Teijeiro, F. F. Casanueva, and M. Marazuela, “Pegvisomant-induced cholestatic hepatitis with jaundice in a patient with Gilbert's syndrome,” European Journal of Endocrinology, vol. 160, no. 5, pp. 869–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  195. I. Bernabeu, M. Marazuela, T. Lucas et al., “Pegvisomant-induced liver injury is related to the UGT1A1*28 polymorphism of Gilbert's syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 5, pp. 2147–2154, 2010. View at Publisher · View at Google Scholar
  196. D. Buyuktas, O. Celik, F. Kantarci, and P. Kadioglu, “Lipodystrophy during pegvisomant therapy: a case report and review of the literature,” Clinics, vol. 65, no. 9, pp. 931–933, 2010. View at Publisher · View at Google Scholar