Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2012 (2012), Article ID 684323, 11 pages
http://dx.doi.org/10.1155/2012/684323
Research Article

Interactions between Serum Adipokines and Osteocalcin in Older Patients with Hip Fracture

1Department of Geriatric Medicine, The Canberra Hospital, Canberra, P.O. Box 11, Woden, ACT 2606, Australia
2Australian National University Medical School Canberra, Canberra, ACT 0200, Australia
3Department of Orthopaedic Surgery, The Canberra Hospital, P.O. Box 11, Woden, ACT 2606, Australia

Received 28 October 2011; Accepted 17 December 2011

Academic Editor: Huan Cai

Copyright © 2012 Alexander Fisher et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. K. Lee, H. Sowa, E. Hinoi et al., “Endocrine regulation of energy metabolism by the skeleton,” Cell, vol. 130, no. 3, pp. 456–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ferron, E. Hinoi, G. Karsenty, and P. Ducy, “Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 13, pp. 5266–5270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. B. Confavreux, R. L. Levine, and G. Karsenty, “A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms,” Molecular and Cellular Endocrinology, vol. 310, no. 1-2, pp. 21–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Ducy, “The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism,” Diabetologia, vol. 54, no. 6, pp. 1291–1297, 2011. View at Publisher · View at Google Scholar
  5. T. Thomas, F. Gori, S. Khosla, M. D. Jensen, B. Burguera, and B. L. Riggs, “Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes,” Endocrinology, vol. 140, no. 4, pp. 1630–1638, 1999. View at Google Scholar · View at Scopus
  6. H. S. Berner, S. P. Lyngstadaas, A. Spahr et al., “Adiponectin and its receptors are expressed in bone-forming cells,” Bone, vol. 35, no. 4, pp. 842–849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. O. Gordeladze, C. A. Drevon, U. Syversen, and J. E. Reseland, “Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling,” Journal of Cellular Biochemistry, vol. 85, no. 4, pp. 825–836, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Kanazawa, T. Yamaguchi, S. Yano, M. Yamauchi, M. Yamamoto, and T. Sugimoto, “Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells,” BMC Cell Biology, vol. 8, article 51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Foresta, G. Strapazzon, L. de Toni et al., “Evidence for osteocalcin production by adipose tissue and its role in human metabolism,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3502–3506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Muruganandan, A. A. Roman, and C. J. Sinal, “Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program,” Cellular and Molecular Life Sciences, vol. 66, no. 2, pp. 236–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Aoki, T. Muneyuki, M. Yoshida et al., “Circulating osteocalcin is increased in early-stage diabetes,” Diabetes Research and Clinical Practice, vol. 92, no. 2, pp. 181–186, 2011. View at Publisher · View at Google Scholar
  12. V. Bini, G. Igli Baroncelli, F. Papi, F. Celi, G. Saggese, and A. Falorni, “Relationships of serum leptin levels with biochemical markers of bone turnover and with growth factors in normal weight and overweight children,” Hormone Research, vol. 61, no. 4, pp. 170–175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Hipmair, N. Böhler, W. Maschek et al., “Serum leptin is correlated to high turnover in osteoporosis,” Neuroendocrinology Letters, vol. 31, no. 1, pp. 155–160, 2010. View at Google Scholar
  14. J. Małyszko, J. S. Małyszko, Z. Bondyra, S. Wołczyński, U. Łebkowska, and M. Myśliwiec, “Bone mineral density and bone metabolism are not related to leptin in hemodialyzed and peritoneally dialyzed uremic patients,” Medical Science Monitor, vol. 10, supplement 3, pp. 115–119, 2004. View at Google Scholar
  15. C. Roux, A. Arabi, R. Porcher, and P. Garnero, “Serum leptin as a determinant of bone resorption in healthy postmenopausal women,” Bone, vol. 33, no. 5, pp. 847–852, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Tamura, M. Yoneda, K. Yamane et al., “Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus,” Metabolism, vol. 56, no. 5, pp. 623–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Berry, S. W. Jones, F. M. Cicuttini, A. E. Wluka, and R. A. MacIewicz, “Temporal relationship between serum adipokines, biomarkers of bone and cartilage turnover, and cartilage volume loss in a population with clinical knee osteoarthritis,” Arthritis and Rheumatism, vol. 63, no. 3, pp. 700–707, 2011. View at Publisher · View at Google Scholar
  18. H. Blain, A. Vuillemin, F. Guillemin et al., “Serum leptin level is a predictor of bone mineral density in postmenopausal women,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1030–1035, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Kindblom, C. Ohlsson, O. Ljunggren et al., “Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men,” Journal of Bone and Mineral Research, vol. 24, no. 5, pp. 785–791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Reinehr and C. L. Roth, “A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss,” International Journal of Obesity, vol. 34, no. 5, pp. 852–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Schett, S. Kiechl, E. Bonora et al., “Serum leptin level and the risk of nontraumatic fracture,” American Journal of Medicine, vol. 117, no. 12, pp. 952–956, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Bacchetta, S. Boutroy, F. Guebre-Egziabher et al., “The relationship between adipokines, osteocalcin and bone quality in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 24, no. 10, pp. 3120–3125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Fernández-Real, M. Izquierdo, F. Ortega et al., “The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 237–245, 2009. View at Publisher · View at Google Scholar
  24. I. Kanazawa, T. Yamaguchi, Y. Tada, M. Yamauchi, S. Yano, and T. Sugimoto, “Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes,” Bone, vol. 48, no. 4, pp. 720–725, 2011. View at Publisher · View at Google Scholar
  25. A. G. Pittas, S. S. Harris, M. Eliades, P. Stark, and B. Dawson-Hughes, “Association between serum osteocalcin and markers of metabolic phenotype,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 3, pp. 827–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Prats-Puig, M. Mas-Parareda, E. Riera-Pérez et al., “Carboxylation of osteocalcin affects its association with metabolic parameters in healthy children,” Diabetes Care, vol. 33, no. 3, pp. 661–663, 2010. View at Publisher · View at Google Scholar
  27. M. K. Shea, C. M. Gundberg, J. B. Meigs et al., “γ-carboxylation of osteocalcin and insulin resistance in older men and women,” American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1230–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Bozic, G. Loncar, N. Prodanovic et al., “Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure,” Journal of Cardiac Failure, vol. 16, no. 4, pp. 301–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Buday, E. Kulcsár, B. Literati Nagy et al., “The role of osteocalcin in the connection of bone and glucose metabolism in humans,” Orvosi Hetilap, vol. 149, no. 52, pp. 2453–2461, 2008. View at Publisher · View at Google Scholar
  30. K. W. Oh, W. Y. Lee, E. J. Rhee et al., “The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men,” Clinical Endocrinology, vol. 63, no. 2, pp. 131–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Qatanani, N. R. Szwergold, D. R. Greaves, R. S. Ahima, and M. A. Lazar, “Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 531–539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. M. Steppan and M. A. Lazar, “The current biology of resistin,” Journal of Internal Medicine, vol. 255, no. 4, pp. 439–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. H. Chen, Y. Song, E. L. Ding et al., “Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts,” Diabetes Care, vol. 32, no. 2, pp. 329–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Fisher, E. Southcott, R. Li, W. Srikusalanukul, M. Davis, and P. Smith, “Serum resistin in older patients with hip fracture: relationship with comorbidity and biochemical determinants of bone metabolism,” Cytokine, vol. 56, no. 2, pp. 157–166, 2011. View at Publisher · View at Google Scholar
  35. P. Ducy, M. Amling, S. Takeda et al., “Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass,” Cell, vol. 100, no. 2, pp. 197–207, 2000. View at Google Scholar · View at Scopus
  36. M. di Monaco, F. Vallero, R. di Monaco, F. Mautino, and A. Cavanna, “Fat body mass, leptin and femur bone mineral density in hip-fractured women,” Journal of Endocrinological Investigation, vol. 26, no. 12, pp. 1180–1185, 2003. View at Google Scholar · View at Scopus
  37. S. Shabat, M. Nyska, S. Eintacht et al., “Serum leptin level in geriatric patients with hip fractures: possible correlation to biochemical parameters of bone remodeling,” Archives of Gerontology and Geriatrics, vol. 48, no. 2, pp. 250–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Özkurt, Z. N. Özkurt, M. Altay, C. N. Aktekin, O. Çağlayan, and Y. Tabak, “The relationship between serum adiponectin level and anthropometry, bone mass, osteoporotic fracture risk in postmenopausal women,” Eklem Hastaliklari ve Cerrahisi, vol. 20, no. 2, pp. 78–84, 2009. View at Google Scholar
  39. K. Kotani, N. Sakane, K. Saiga, and Y. Kurozawa, “Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness,” Diabetologia, vol. 48, no. 12, pp. 2684–2686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. C.-H. Lau and S. Muniandy, “Novel adiponectin-resistin (AR) and insulin resistance (IRAR) indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: a case control study,” Cardiovascular Diabetology, vol. 10, no. 1, article 8, 2011. View at Publisher · View at Google Scholar
  41. G. D. Norata, S. Raselli, L. Grigore et al., “Leptin:adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery,” Stroke, vol. 38, no. 10, pp. 2844–2846, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Oda, S. Imamura, T. Fujita et al., “The ratio of leptin to adiponectin can be used as an index of insulin resistance,” Metabolism, vol. 57, no. 2, pp. 268–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Takamura, N. Hayashida, K. Hagane et al., “Leptin to high-molecular-weight adiponectin ratio is independently correlated with carotid intima-media thickness in men, but not in women,” Biomarkers, vol. 15, no. 4, pp. 340–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Google Scholar
  45. O. Bouillanne, J. L. Golmard, C. Coussieu et al., “Leptin a new biological marker for evaluating malnutrition in elderly patients,” European Journal of Clinical Nutrition, vol. 61, no. 5, pp. 647–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Driessler and P. A. Baldock, “Hypothalamic regulation of bone,” Journal of Molecular Endocrinology, vol. 45, no. 4, pp. 175–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Takeda, “Central control of bone remodelling,” Journal of Neuroendocrinology, vol. 20, no. 6, pp. 802–807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. C. M. Steppan, D. T. Crawford, K. L. Chidsey-Frink, H. Ke, and A. G. Swick, “Leptin is a potent stimulator of bone growth in ob/ob mice,” Regulatory Peptides, vol. 92, no. 1–3, pp. 73–78, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Tamasi, B. J. Arey, D. R. Bertolini, and J. H. Feyen, “Characterization of bone structure in leptin receptor-deficient Zucker (fa/fa) rats,” Journal of Bone and Mineral Research, vol. 18, no. 9, pp. 1605–1611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Ghazali, F. Grados, R. Oprisiu et al., “Bone mineral density directly correlates with elevated serum leptin in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 18, no. 9, pp. 1882–1890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Pasco, M. J. Henry, M. A. Kotowicz et al., “Serum leptin levels are associated with bone mass in nonobese women,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 1884–1887, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Tanaka, K. Narusawa, H. Onishi et al., “Lower osteocalcin and osteopontin contents of the femoral head in hip fracture patients than osteoarthritis patients,” Osteoporosis International, vol. 22, no. 2, pp. 587–597, 2011. View at Google Scholar
  53. Z. M. Zhang, L. S. Jiang, S. D. Jiang, and L. Y. Dai, “Osteogenic potential and responsiveness to leptin of mesenchymal stem cells between postmenopausal women with osteoarthritis and osteoporosis,” Journal of Orthopaedic Research, vol. 27, no. 8, pp. 1067–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Bajoria, S. R. Sooranna, and R. Chatterjee, “Leptin and bone turnover in monochorionic twins complicated by twin-twin transfusion syndrome,” Osteoporosis International, vol. 18, no. 2, pp. 193–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Burguera, L. C. Hofbauer, T. Thomas et al., “Leptin reduces ovariectomy-induced bone loss in rats,” Endocrinology, vol. 142, no. 8, pp. 3546–3553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Martin, V. David, L. Malaval, M. H. Lafage-Proust, L. Vico, and T. Thomas, “Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway,” Endocrinology, vol. 148, no. 7, pp. 3419–3425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. W. Hamrick, K. H. Ding, S. Ponnala, S. L. Ferrari, and C. M. Isales, “Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight,” Journal of Bone and Mineral Research, vol. 23, no. 6, pp. 870–878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. G. A. Williams, Y. Wang, K. E. Callon et al., “In vitro and in vivo effects of adiponectin on bone,” Endocrinology, vol. 150, no. 8, pp. 3603–3610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Shinoda, M. Yamaguchi, N. Ogata et al., “Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways,” Journal of Cellular Biochemistry, vol. 99, no. 1, pp. 196–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. E. O'Donnell and M. J. de Souza, “Increased serum adiponectin concentrations in amenorrheic physically active women are associated with impaired bone health but not with estrogen exposure,” Bone, vol. 48, no. 4, pp. 760–767, 2011. View at Publisher · View at Google Scholar
  61. H. Zhang, H. Xie, Q. Zhao et al., “Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women,” Journal of Endocrinological Investigation, vol. 33, no. 10, pp. 707–711, 2010. View at Publisher · View at Google Scholar
  62. M. D. Kontogianni, U. G. Dafni, J. G. Routsias, and F. N. Skopouli, “Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women,” Journal of Bone and Mineral Research, vol. 19, no. 4, pp. 546–551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Thommesen, A. K. Stunes, M. Monjo et al., “Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism,” Journal of Cellular Biochemistry, vol. 99, no. 3, pp. 824–834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Forsblad d'elia, R. Pullerits, H. Carlsten, and M. Bokarewa, “Resistin in serum is associated with higher levels of IL-1Ra in post-menopausal women with rheumatoid arthritis,” Rheumatology, vol. 47, no. 7, pp. 1082–1087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Almehed, H. F. d'Elia, M. Bokarewa, and H. Carlsten, “Role of resistin as a marker of inflammation in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 10, no. 1, article R15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Y. Gharibeh, G. M. Al Tawallbeh, M. M. Abboud, A. Radaideh, A. A. Alhader, and O. F. Khabour, “Correlation of plasma resistin with obesity and insulin resistance in type 2 diabetic patients,” Diabetes and Metabolism, vol. 36, no. 6, pp. 443–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. T. E. Korah, H. H. Ibrahim, E. A. Badr, and M. K. Elshafie, “Serum resistin in acute myocardial infarction patients with and without diabetes mellitus,” Postgraduate Medical Journal, vol. 87, no. 1029, pp. 463–467, 2011. View at Publisher · View at Google Scholar
  68. H. Osawa, M. Ochi, K. Kato et al., “Serum resistin is associated with the severity of microangiopathies in type 2 diabetes,” Biochemical and Biophysical Research Communications, vol. 355, no. 2, pp. 342–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Takata, H. Osawa, M. Kurata et al., “Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes,” Hypertension, vol. 51, no. 2, pp. 534–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. K. M. Barnes and J. L. Miner, “Role of resistin in insulin sensitivity in rodents and humans,” Current Protein and Peptide Science, vol. 10, no. 1, pp. 96–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. F. Hivert, L. M. Sullivan, C. S. Fox et al., “Associations of adiponectin, resistin, and tumor necrosis factor-α with insulin resistance,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 8, pp. 3165–3172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. D. R. Schwartz and M. A. Lazar, “Human resistin: found in translation from mouse to man,” Trends in Endocrinology and Metabolism, vol. 22, no. 7, pp. 259–265, 2011. View at Publisher · View at Google Scholar
  73. A. Stofkova, “Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity,” Endocrine Regulations, vol. 44, no. 1, pp. 25–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Zoccali and F. Mallamaci, “Adiponectin and leptin in chronic kidney disease: causal factors or mere risk markers?” Journal of Renal Nutrition, vol. 21, no. 1, pp. 87–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Yang and V. Grey, “Pediatric reference intervals for bone markers,” Clinical Biochemistry, vol. 39, no. 6, pp. 561–568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Tan, Y. Gao, X. Yang et al., “Low serum osteocalcin level is a potential marker for metabolic syndrome: results from a Chinese male population survey,” Metabolism, vol. 60, no. 8, pp. 1186–1192, 2011. View at Publisher · View at Google Scholar
  77. R. S. Ahima and M. A. Lazar, “Adipokines and the peripheral and neural control of energy balance,” Molecular Endocrinology, vol. 22, no. 5, pp. 1023–1031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. T. D. Hoyda and A. V. Ferguson, “Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents,” Endocrinology, vol. 151, no. 7, pp. 3154–3162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Kosari, J. A. Rathner, F. Chen, S. Kosari, and E. Badoer, “Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue,” Endocrinology, vol. 152, no. 7, pp. 2626–2633, 2011. View at Publisher · View at Google Scholar
  80. C. Schulz, K. Paulus, and H. Lehnert, “Adipocyte-brain: crosstalk,” Results and Problems in Cell Differentiation, vol. 52, pp. 189–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. J. Vázquez, C. R. González, L. Varela et al., “Central resistin regulates hypothalamic and peripheral lipid metabolism in a nutritional-dependent fashion,” Endocrinology, vol. 149, no. 9, pp. 4534–4543, 2008. View at Publisher · View at Google Scholar
  82. W. Cousin, A. Courseaux, A. Ladoux, C. Dani, and P. Peraldi, “Cloning of hOST-PTP: the only example of a protein-tyrosine-phosphatase the function of which has been lost between rodent and human,” Biochemical and Biophysical Research Communications, vol. 321, no. 1, pp. 259–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. K. W. Ng, “Regulation of glucose metabolism and the skeleton,” Clinical Endocrinology, vol. 75, no. 2, pp. 147–155, 2011. View at Publisher · View at Google Scholar