Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2012 (2012), Article ID 721653, 10 pages
http://dx.doi.org/10.1155/2012/721653
Review Article

Gestational Diabetes Mellitus: A Positive Predictor of Type 2 Diabetes?

1The University of Queensland Centre for Clinical Research, RBWH Campus, Herston, Brisbane, QLD 4029, Australia
2Department of Obstetrics and Gynecology, Universidad de Los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile

Received 30 December 2011; Accepted 8 March 2012

Academic Editor: Alexandra Kautzky-Willer

Copyright © 2012 Gregory E. Rice et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Lee, R. J. Hiscock, P. Wein, S. P. Walker, and M. Permezel, “Gestational diabetes mellitus: clinical predictors and long-term risk of developing type 2 Diabetes—a retrospective cohort study using survival analysis,” Diabetes Care, vol. 30, no. 4, pp. 878–883, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Lawrence, R. Contreras, W. S. Chen, and D. A. Sacks, “Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005,” Diabetes Care, vol. 31, no. 5, pp. 899–904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, “Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Research and Clinical Practice, vol. 87, no. 1, pp. 4–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Control CfD, Diabetes and Women's Health Across the Life Stages: A Public Health Perspective, 2002.
  6. R. Saxena, B. F. Voight, V. Lyssenko et al., “Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels,” Science, vol. 316, no. 5829, pp. 1331–1336, 2007. View at Publisher · View at Google Scholar
  7. J. Dupuis, C. Langenberg, I. Prokopenko et al., “New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk,” Nature Genetics, vol. 42, no. 2, pp. 105–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. J. Scott, K. L. Mohlke, L. L. Bonnycastle et al., “A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants,” Science, vol. 316, no. 5829, pp. 1341–1345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Sladek, G. Rocheleau, J. Rung et al., “A genome-wide association study identifies novel risk loci for type 2 diabetes,” Nature, vol. 445, no. 7130, pp. 881–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Zeggini, M. N. Weedon, C. M. Lindgren et al., “Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes,” Science, vol. 316, no. 5829, pp. 1336–1341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. P. Robertson, “β-cell deterioration during diabetes: what's in the gun?” Trends in Endocrinology and Metabolism, vol. 20, no. 8, pp. 388–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R. A. Rizza, and P. C. Butler, “β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes,” Diabetes, vol. 52, no. 1, pp. 102–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Ghosh, “Factors involved in the regulation of type I collagen gene expression: implication in fibrosis,” Experimental Biology and Medicine, vol. 227, no. 5, pp. 301–314, 2002. View at Google Scholar · View at Scopus
  15. D. Iliopoulos, H. A. Hirsch, and K. Struhl, “An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation,” Cell, vol. 139, no. 4, pp. 693–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Zhu, N. Shyh-Chang, A. V. Segre et al., “The Lin28/let-7 axis regulates glucose metabolism,” Cell, vol. 147, no. 1, pp. 81–94, 2011. View at Google Scholar
  17. M. B. Weber, J. G. Twombly, K. M. V. Narayan, and L. S. Phillips, “Lifestyle interventions and the prevention and treatment of type 2 diabetes,” American Journal of Lifestyle Medicine, vol. 4, pp. 468–480, 2010. View at Google Scholar
  18. R. Holman, S. Paul, M. Bethel, D. Matthews, and H. Neil, “10-year follow-up of intensive glucose control in type 2 diabetes,” The New England Journal of Medicine, vol. 359, no. 15, pp. 1577–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Saito, M. Watanabe, J. Nishida et al., “Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial,” Archives of Internal Medicine, vol. 171, no. 15, pp. 1352–1360, 2011. View at Publisher · View at Google Scholar
  20. R. E. Ratner, C. A. Christophi, B. E. Metzger et al., “Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 12, pp. 4774–4779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Google Scholar
  22. N. A. Beischer, J. N. Oats, O. A. Henry, M. T. Sheedy, and J. E. Walstab, “Incidence and severity of gestational diabetes mellitus according to country of birth in women living in Australia,” Diabetes, vol. 40, supplement 2, pp. 35–38, 1991. View at Google Scholar · View at Scopus
  23. F. A. Van Assche, L. Aerts, and K. Holemans, “Maternal diabetes and the effect for the offspring,” Verhandelingen, vol. 54, no. 2, pp. 95–107, 1992. View at Google Scholar · View at Scopus
  24. F. A. Van Assche, L. Aerts, and K. Holemans, “Metabolic alterations in adulthood after intrauterine development in mothers with mild diabetes,” Diabetes, vol. 40, no. 2, pp. 106–108, 1991. View at Google Scholar · View at Scopus
  25. F. A. Van Assche, L. Aerts, and K. Holemans, “The effects of maternal diabetes on the offspring,” Bailliere's Clinical Obstetrics and Gynaecology, vol. 5, no. 2, pp. 485–492, 1991. View at Google Scholar · View at Scopus
  26. F. A. Van Assche, K. Holemans, and L. Aerts, “Long-term consequences for offspring of diabetes during pregnancy,” British Medical Bulletin, vol. 60, pp. 173–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Di Cianni, R. Miccoli, L. Volpe, C. Lencioni, and S. Del Prato, “Intermediate metabolism in normal pregnancy and in gestational diabetes,” Diabetes/Metabolism Research and Reviews, vol. 19, no. 4, pp. 259–270, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Longo, “Maternal blood volume and cardiac output during pregnancy: a hypothesis of endocrinologic control,” The American Journal of Physiology, vol. 245, no. 5, pp. R720–729, 1983. View at Google Scholar · View at Scopus
  29. J. P. Kirwan, S. Hauguel-de Mouzon, J. Lepercq et al., “TNF-α is a predictor of insulin resistance in human pregnancy,” Diabetes, vol. 51, no. 7, pp. 2207–2213, 2002. View at Google Scholar · View at Scopus
  30. N. Samaan, S. C. C. Yen, D. Gonzalez, and O. H. Pearson, “Metabolic effects of placental lactogen (HPL) in man,” Journal of Clinical Endocrinology and Metabolism, vol. 28, no. 4, pp. 485–491, 1968. View at Google Scholar · View at Scopus
  31. E. Herrera, “Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus,” European Journal of Clinical Nutrition, vol. 54, supplement 1, pp. S47–S51, 2000. View at Google Scholar · View at Scopus
  32. R. Retnakaran, Y. Qi, P. W. Connelly, M. Sermer, A. J. Hanley, and B. Zinman, “Risk of early progression to prediabetes or diabetes in women with recent gestational dysglycaemia but normal glucose tolerance at 3-month postpartum,” Clinical Endocrinology, vol. 73, no. 4, pp. 476–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Retnakaran, Y. Qi, P. W. Connelly, M. Sermer, B. Zinman, and A. J. G. Hanley, “Glucose intolerance in pregnancy and postpartum risk of metabolic syndrome in young women,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 670–677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. E. Friedman, T. Ishizuka, J. H. Shao, L. Huston, T. Highman, and P. Catalano, “Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes,” Diabetes, vol. 48, no. 9, pp. 1807–1814, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. M. T. Coughlan, M. Permezel, H. M. Georgiou, and G. E. Rice, “Repression of oxidant-induced nuclear factor-κB activity mediates placental cytokine responses in gestational diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 7, pp. 3585–3594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. T. Coughlan, K. Oliva, H. M. Georgiou, J. M. Permezel, and G. E. Rice, “Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus,” Diabetic Medicine, vol. 18, no. 11, pp. 921–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. T. Coughlan, P. P. Vervaart, M. Permezel, H. M. Georgiou, and G. E. Rice, “Altered placental oxidative stress status in gestational diabetes mellitus,” Placenta, vol. 25, no. 1, pp. 78–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. I. C. West, “Radicals and oxidative stress in diabetes,” Diabetic Medicine, vol. 17, no. 3, pp. 171–180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Kinalski, A. Śledziewski, B. Telejko et al., “Lipid peroxidation, antioxidant defence and acid-base status in cord blood at birth: the influence of diabetes,” Hormone and Metabolic Research, vol. 33, no. 4, pp. 227–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Biri, A. Onan, E. Devrim, F. Babacan, M. Kavutcu, and I. Durak, “Oxidant status in maternal and cord plasma and placental tissue in gestational diabetes,” Placenta, vol. 27, no. 2-3, pp. 327–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Lappas, M. Permezel, and G. E. Rice, “Release of proinflammatory cytokines and 8-isoprostane from placenta, adipose tissue, and skeletal muscle from normal pregnant women and women with gestational diabetes mellitus,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5627–5633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. M Lappas, U. Hiden, G. Desoye et al., “The role of oxidative stress in the pathophysiology of gestational diabetes mellitus,” Antioxidants & Redox Signaling, vol. 15, no. 12, pp. 3061–3100, 2011. View at Google Scholar
  43. D. R. Coustan, L. P. Lowe, and B. E. Metzger, “The hyperglycemia and adverse pregnancy outcome (HAPO) study: can we use the results as a basis for change?” Journal of Maternal-Fetal and Neonatal Medicine, vol. 23, no. 3, pp. 204–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. B. E. Metzger, B. Persson, L. P. Lowe et al., “Hyperglycemia and adverse pregnancy outcome study: neonatal glycemia,” Pediatrics, vol. 126, no. 6, pp. E1545–E1552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Caliskan, F. Kayikcioglu, N. Ozturk, S. Koc, and A. Haberal, “A population-based risk factor scoring will decrease unnecessary testing for the diagnosis of gestational diabetes mellitus,” Acta Obstetricia et Gynecologica Scandinavica, vol. 83, no. 6, pp. 524–530, 2004. View at Google Scholar
  46. S. Riskin-Mashiah, A. Damti, G. Younes, and R. Auslander, “Pregestational body mass index, weight gain during pregnancy and maternal hyperglycemia,” Gynecological Endocrinology, vol. 27, no. 7, pp. 464–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. S. Morisset, A. Tchernof, M. C. Dubé, J. Veillette, S. J. Weisnagel, and J. Robitaille, “Weight gain measures in women with gestational diabetes mellitus,” Journal of Women's Health, vol. 20, no. 3, pp. 375–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. D. A. Sacks, W. Chen, G. Wolde-Tsadik, and T. A. Buchanan, “Fasting plasma glucose test at the first prenatal visit as a screen for gestational diabetes,” Obstetrics and Gynecology, vol. 101, no. 6, pp. 1197–1203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Maegawa, T. Sugiyama, H. Kusaka, M. Mitao, and N. Toyoda, “Screening tests for gestational diabetes in Japan in the 1st and 2nd trimester of pregnancy,” Diabetes Research and Clinical Practice, vol. 62, no. 1, pp. 47–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. S. M. Bhattacharya, “Fasting or two-hour postprandial plasma glucose levels in early months of pregnancy as screening tools for gestational diabetes mellitus developing in later months of pregnancy,” Journal of Obstetrics and Gynaecology Research, vol. 30, no. 4, pp. 333–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Cypryk, L. Czupryniak, J. Wilczynski, and A. Lewinski, “Diabetes screening after gestational diabetes mellitus: poor performance of fasting plasma glucose,” Acta Diabetol, vol. 41, no. 1, pp. 5–8, 2004. View at Google Scholar
  52. R. Retnakaran, A. J. G. Hanley, N. Raif, P. W. Connelly, M. Sermer, and B. Zinman, “Hypoadiponectinaemia in South Asian women during pregnancy: evidence of ethnic variation in adiponectin concentration,” Diabetic Medicine, vol. 21, no. 4, pp. 388–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Williams, C. Qiu, M. Muy-Rivera, S. Vadachkoria, T. Song, and D. A. Luthy, “Plasma adiponectin concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 5, pp. 2306–2311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Wolf, L. Sandler, K. Hsu, K. Vossen-Smirnakis, J. L. Ecker, and R. Thadhani, “First-trimester C-reactive protein and subsequent gestational diabetes,” Diabetes Care, vol. 26, no. 3, pp. 819–824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. C. J. Nolan, S. F. Riley, M. T. Sheedy, J. E. Walstab, and N. A. Bescher, “Maternal serum triglyceride, glucose tolerance, and neonatal birth weight ratio in pregnancy: a study within a racially heterogeneous population,” Diabetes Care, vol. 18, no. 12, pp. 1550–1556, 1995. View at Google Scholar · View at Scopus
  56. R. Thadhani, M. Wolf, K. Hsu-Blatman, L. Sandler, D. Nathan, and J. L. Ecker, “First-trimester sex hormone binding globulin and subsequent gestational diabetes mellitus,” American Journal of Obstetrics and Gynecology, vol. 189, no. 1, pp. 171–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Y. T. Ong, T. T. Lao, K. Spencer, and K. H. Nicolaides, “Maternal serum level of placental growth factor in diabetic pregnancies,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 49, no. 6, pp. 477–480, 2004. View at Google Scholar · View at Scopus
  58. C. F. Qiu, M. A. Williams, S. Vadachkoria, I. O. Frederick, and D. A. Luthy, “Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus,” Obstetrics and Gynecology, vol. 103, no. 3, pp. 519–525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. C. F. Qiu, K. Hevner, D. Abetew, D. A. Enquobahrie, and M. A. Williams, “Oxidative DNA damage in early pregnancy and risk of gestational diabetes mellitus: a pilot study,” Clinical Biochemistry, vol. 44, no. 10-11, pp. 804–808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Thadhani, C. E. Powe, M. L. Tjoa et al., “First-trimester follistatin-like-3 levels in pregnancies complicated by subsequent gestational diabetes mellitus,” Diabetes Care, vol. 33, no. 3, pp. 664–669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. G. G. Nahum, S. B. Wilson, and H. Stanislaw, “Early-pregnancy glucose screening for gestational diabetes mellitus,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 47, no. 8, pp. 656–662, 2002. View at Google Scholar · View at Scopus
  62. N. Rifai and P. M. Ridker, “Population distributions of C-reactive protein in apparently healthy men and women in the United States: implication for clinical interpretation,” Clinical Chemistry, vol. 49, no. 4, pp. 666–669, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Kikuchi and D. P. Carbone, “Proteomics analysis in lung cancer: challenges and opportunities,” Respirology, vol. 12, no. 1, pp. 22–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Kikuchi, T. Kita, I. Iwano et al., “Prediction of clinical course and recurrence of human ovarian cancer by several serum tumor markers,” Acta Obstetrica et Gynaecologica Japonica, vol. 41, no. 1, pp. 69–76, 1989. View at Google Scholar
  65. T. Fushiki, H. Fujisawa, and S. Eguchi, “Identification of biomarkers from mass spectrometry data using a “common” peak approach,” BMC Bioinformatics, vol. 7, article 358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Listgarten and A. Emili, “Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry,” Molecular and Cellular Proteomics, vol. 4, no. 4, pp. 419–434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. H. M. Georgiou, M. Lappas, G. M. Georgiou et al., “Screening for biomarkers predictive of gestational diabetes mellitus,” Acta Diabetologica, vol. 45, no. 3, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. G. E. Rice, H. M. Georgiou, N. Ahmed, G. Shi, and G. Kruppa, “Translational proteomics: developing a predictive capacity—a review,” Placenta, vol. 27, supplement A, pp. 76–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Anderon, “Candidate-based proteomics in the search for biomarkers of cardiovascular disease,” Journal of Physiology, vol. 563, no. 1, pp. 23–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. M. J. Pencina, R. B. D'Agostino, R. B. D'Agostino, and R. S. Vasan, “Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond,” Statistics in Medicine, vol. 27, no. 2, pp. 157–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. J. Pencina, R. B. D'Agostino, and E. W. Steyerberg, “Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers,” Statistics in Medicine, vol. 30, no. 1, pp. 11–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. M. J. Pencina, R. B. D'Agostino, and R. S. Vasan, “Statistical methods for assessment of added usefulness of new biomarkers,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 12, pp. 1703–1711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. H. M. Georgiou, M. Lappas, G. M. Georgiou et al., “Screening for biomarkers predictive of gestational diabetes mellitus,” Acta Diabetologica, vol. 45, no. 3, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Bellamy, J. P. Casas, A. D. Hingorani, and D. Williams, “Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis,” The Lancet, vol. 373, no. 9677, pp. 1773–1779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. C. S. Göbl, L. Bozkurt, T. Prikoszovich, C. Winzer, G. Pacini, and A. Kautzky-Willer, “Early possible risk factors for overt diabetes after gestational diabetes mellitus,” Obstetrics and Gynecology, vol. 118, no. 1, pp. 71–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. K. M. Godfrey, T. Forrester, D. J. P. Barker et al., “Maternal nutritional status in pregnancy and blood pressure in childhood,” British Journal of Obstetrics and Gynaecology, vol. 101, no. 5, pp. 398–403, 1994. View at Google Scholar · View at Scopus
  77. J. A. Armitage, L. Poston, and P. D. Taylor, “Developmental origins of obesity and the metabolic syndrome: The role of maternal obesity,” Frontiers of Hormone Research, vol. 36, pp. 73–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. P. W. Nathanielsz, “Animal models that elucidate basic principles of the developmental origins of adult diseases,” ILAR Journal, vol. 47, no. 1, pp. 73–82, 2006. View at Google Scholar · View at Scopus
  79. K. M. Wilson, W. C. Willett, and K. B. Michels, “Mothers' pre-pregnancy BMI and weight gain during pregnancy and risk of breast cancer in daughters,” Breast Cancer Research and Treatment, vol. 130, pp. 273–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. S. Cnossen, M. M. G. Leeflang, E. E. M. de Haan et al., “Accuracy of body mass index in predicting pre-eclampsia: bivariate meta-analysis,” International Journal of Obstetrics & Gynaecology, vol. 114, no. 12, pp. 1477–1485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. C. M. Bulik, A. Von Holle, K. Gendall et al., “Maternal eating disorders influence sex ratio at birth,” Acta Obstetricia et Gynecologica Scandinavica, vol. 87, no. 9, pp. 979–981, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. S. M. Grant, T. M. S. Wolever, D. L. O'Connor, R. Nisenbaum, and R. G. Josse, “Effect of a low glycaemic index diet on blood glucose in women with gestational hyperglycaemia,” Diabetes Research and Clinical Practice, vol. 91, no. 1, pp. 15–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Haugen, A. Vikanes, A. L. Brantsaeter et al., “Diet before pregnancy and the risk of hyperemesis gravidarum,” British Journal of Nutrition, vol. 106, no. 4, pp. 596–602, 2011. View at Google Scholar
  84. A. Bertolotto, L. Volpe, A. Calianno et al., “Physical activity and dietary habits during pregnancy: effects on glucose tolerance,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 23, no. 11, pp. 1310–1314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Bertolotto, L. Volpe, S. Vignali et al., “Influence of pre-pregnancy body mass index, physical activity and dietary habits on glucose tolerance during pregnancy,” Diabetologia, vol. 51, pp. S466–S466, 2008. View at Google Scholar
  86. J. G. Ray, T. E. O'brien, and W. S. Chan, “Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis,” International Journal of Medicine, vol. 94, no. 8, pp. 435–444, 2001. View at Google Scholar · View at Scopus
  87. R. J. Van Lieshout and L. P. Voruganti, “Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: a review of the evidence and putative mechanisms,” Journal of Psychiatry and Neuroscience, vol. 33, no. 5, pp. 395–404, 2008. View at Google Scholar · View at Scopus
  88. N. Maconochie, P. Doyle, S. Prior, and R. Simmons, “Risk factors for first trimester miscarriage—results from a UK-population-based case-control study,” BJOG, vol. 114, no. 2, pp. 170–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. D. P. Sundrani, P. M. C. Gautam, S. S. Mehendale, and S. R. Joshi, “Altered metabolism of maternal micronutrients and omega 3 fatty acids epigenetically regulate matrix metalloproteinases in preterm pregnancy: a novel hypothesis,” Medical Hypotheses, vol. 77, no. 5, pp. 878–883, 2011. View at Google Scholar
  90. A. Kulkarni, K. Dangat, A. Kale, P. Sable, P. Chavan-Gautam, and S. Joshi, “Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in wistar rats,” Plos ONE, vol. 6, no. 3, Article ID e17706, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Gallou-Kabani, A. Gabory, J. Tost et al., “Sex- and diet-specific changes of imprinted gene expression and dna methylation in mouse placenta under a high-fat diet,” Plos ONE, vol. 5, no. 12, Article ID e14398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Suter, A. Abramovici, L. Patterson et al., “Maternal tobacco use modestly alters correlated epigenome wide placental DNA methylation and gene expression,” American Journal of Obstetrics and Gynecology, vol. 204, no. 1, supplement, pp. S171–S172, 2011. View at Google Scholar
  93. Y. Bobetsis, S. Barros, D. Lin et al., “Bacterial infection promotes DNA hypermethylation,” Journal of Dental Research, vol. 86, no. 2, pp. 169–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. J. R. O'Reilly, A. J. Drake, R. L. Jones et al., “Maternal obesity is associated with altered placental expression and DNA methylation of key genes in fetal growth in human pregnancy during the first trimester, but not at term,” Journal of Developmental Origins of Health and Disease, vol. 2, pp. S96–S96, 2011. View at Google Scholar
  95. C. P. Gheorghe, R. Goyal, A. Mittal, and L. D. Longo, “Gene expression in the placenta: maternal stress and epigenetic responses,” International Journal of Developmental Biology, vol. 54, no. 2-3, pp. 507–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Bouchard, S. Thibault, S. P. Guay et al., “Placental leptin gene DNA methylation adaptation to gestational diabetes,” Obesity, vol. 18, pp. S73–S73, 2010. View at Google Scholar
  97. Z. Q. Wang, S. Lu, C. M. Liu et al., “Expressional and epigenetic alterations of placental matrix metalloproteinase 9 in preeclampsia,” Gynecological Endocrinology, vol. 26, no. 2, pp. 96–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Yu, M. Chen, D. Zhao et al., “The H19 gene imprinting in normal pregnancy and pre-eclampsia,” Placenta, vol. 30, no. 5, pp. 443–447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Johnson, S. F. Posner, J. Biermann et al., “Recommendations to improve preconception health and health care—United States. A report of the CDC/ATSDR preconception care work group and the select panel on preconception care,” Morbidity and Mortality Weekly Report, vol. 16, no. 4, pp. 454–57, 2006. View at Google Scholar · View at Scopus
  100. “A Report of the CDC/ATSDR preconception care work group and the select panel on preconception care,” Morbidity and Mortality Weekly Report, vol. 55, pp. 1–23, 2006, Recomendations and Reports.
  101. A. Elixhauser, J. M. Weschler, J. L. Kitzmiller et al., “Cost-benefit analysis of preconception care for women with established diabetes mellitus,” Diabetes Care, vol. 16, no. 8, pp. 1146–1157, 1993. View at Google Scholar · View at Scopus
  102. W. H. Herman, N. K. Janz, M. P. Becker, and D. Charron-Prochownik, “Diabetes and pregnancy: preconception care, pregnancy outcomes, resource utilization and costs,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 44, no. 1, pp. 33–38, 1999. View at Google Scholar · View at Scopus
  103. F. Galtier-Dereure, C. Boegner, and J. Bringer, “Obesity and pregnancy: complications and cost,” American Journal of Clinical Nutrition, vol. 71, no. 5, pp. 1242S–1248S, 2000. View at Google Scholar · View at Scopus
  104. M. K. Moos and A. C. Bennett, Preconceptional Health Promotion, Springer Science, 2011, Edited by A. Handler , J. Kennelly , N. Peacock.
  105. T. R. Church, K. E. Anderson, N. E. Caporaso et al., “A prospectively measured serum biomarker for a tobacco-specific carcinogen and lung cancer in smokers,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 1, pp. 260–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. O. Dorigo and J. S. Berek, “Personalizing CA125 levels for ovarian cancer screening,” Cancer Prevention Research, vol. 4, no. 9, pp. 1356–1359, 2011. View at Google Scholar