Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2012 (2012), Article ID 896736, 5 pages
http://dx.doi.org/10.1155/2012/896736
Clinical Study

Fetuin-A Characteristics during and after Pregnancy: Result from a Case Control Pilot Study

13rd Department of Medicine, Cardiology and Emergency Medicine, Wilhelminen Hospital, Montleartstrasse 37, 1160 Vienna, Austria
2Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
3Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy
4Clinical Institute for Medical and Chemical Laboratory Diagnostic, General Hospital of Vienna, Vienna, Austria
5Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria

Received 30 October 2011; Accepted 23 January 2012

Academic Editor: Graziano Di Cianni

Copyright © 2012 Serdar Farhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Schäfer, A. Heiss, A. Schwarz et al., “The serum protein α2-Heremans-Schmid glycoprotein/ fetuin-A is a systemically acting inhibitor of ectopic calcification,” Journal of Clinical Investigation, vol. 112, no. 3, pp. 357–366, 2003. View at Publisher · View at Google Scholar
  2. P. Auberger, L. Falquerho, J. O. Contreres et al., “Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity,” Cell, vol. 58, no. 4, pp. 631–640, 1989. View at Google Scholar · View at Scopus
  3. S. T. Mathews, N. Chellam, P. R. Srinivas et al., “α2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor,” Molecular and Cellular Endocrinology, vol. 164, no. 1-2, pp. 87–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Ix, M. G. Shlipak, V. M. Brandenburg, S. Ali, M. Ketteler, and M. A. Whooley, “Association between human fetuin-A and the metabolic syndrome: data from the heart and soul study,” Circulation, vol. 113, no. 14, pp. 1760–1767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Ix, C. L. Wassel, A. M. Kanaya et al., “Fetuin-A and incident diabetes mellitus in older persons,” JAMA—Journal of the American Medical Association, vol. 300, no. 2, pp. 182–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Stefan, A. M. Hennige, H. Staiger et al., “α2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans,” Diabetes Care, vol. 29, no. 4, pp. 853–857, 2006. View at Google Scholar
  7. L. Kalabay, K. Cseh, A. Pajor et al., “Correlation of maternal serum fetuin/α2-HS-glycoprotein concentration with maternal insulin resistance and anthropometric parameters of neonates in normal pregnancy and gestational diabetes,” European Journal of Endocrinology, vol. 147, no. 2, pp. 243–248, 2002. View at Google Scholar
  8. American Diabetes Association, “Clinical practice recommendations,” Diabetes Care, vol. 25, supplement 1, pp. S1–S14, 2002. View at Google Scholar
  9. A. Mari, G. Pacini, E. Murphy, B. Ludvik, and J. J. Nolan, “A model-based method for assessing insulin sensitivity from the oral glucose tolerance test,” Diabetes Care, vol. 24, no. 3, pp. 539–548, 2001. View at Google Scholar · View at Scopus
  10. A. Kautzky-Willer, A. Tura, C. Winzer et al., “Insulin sensitivity during oral glucose tolerance test and its relations to parameters of glucose metabolism and endothelial function in type 2 diabetic subjects under metformin and thiazolidinedione,” Diabetes, Obesity and Metabolism, vol. 8, no. 5, pp. 561–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Tura, B. Ludvik, J. J. Nolan, G. Pacini, and K. Thomaseth, “Insulin and C-peptide secretion and kinetics in humans: direct and model-based measurements during OGTT,” American Journal of Physiology, vol. 281, no. 5, pp. E966–E974, 2001. View at Google Scholar
  12. H. Takata, Y. Ikeda, T. Suehiro et al., “High glucose induces transactivation of the α2-HS glycoprotein gene through the ERK1/2 signaling pathway,” Journal of Atherosclerosis and Thrombosis, vol. 16, no. 4, pp. 448–456, 2009. View at Google Scholar
  13. J. M. Brix, H. Stingl, F. Höllerl, G. H. Schernthaner, H. P. Kopp, and G. Schernthaner, “Elevated fetuin-A concentrations in morbid obesity decrease after dramatic weight loss,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 11, pp. 4877–4881, 2010. View at Publisher · View at Google Scholar
  14. T. Reinehr and C. L. Roth, “Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4479–4485, 2008. View at Publisher · View at Google Scholar · View at Scopus