Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2012, Article ID 948683, 8 pages
Research Article

Isolation of Pancreatic Progenitor Cells with the Surface Marker of Hematopoietic Stem Cells

State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences, Tianjin 300020, China

Received 19 September 2012; Revised 27 November 2012; Accepted 29 November 2012

Academic Editor: Leon Bach

Copyright © 2012 Fengxia Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


To isolate pancreatic progenitor cells with the surface markers of hematopoietic stem cells, the expression of stem cell antigen (Sca-1) and c-Kit and the coexpression of them with pancreatic duodenal homeobox-1 (PDX-1), neurogenin 3 (Ngn3), and insulin were examined in murine embryonic pancreas. Then different pancreatic cell subpopulations were isolated by magnet-activated cell sorting. Isolated cells were cultured overnight in hanging drops. When cells formed spheres, they were laid on floating filters at the air/medium interface. With this new culture system, pancreatic progenitor cells were induced to differentiate to endocrine and exocrine cells. It was shown that c-Kit and Sca-1 were expressed differently in embryonic pancreas at 12.5, 15.5, and 17.5 days of gestation. The expression of c-Kit and Sca-1 was the highest at 15.5 days of gestation. c-Kit rather than Sca-1 coexpressed with PDX-1, Ngn3, and insulin. Cells differentiated from c-Kit-positive cells contained more insulin-producing cells and secreted more insulin in response to glucose stimulation than that from c-Kit-negative cells. These results suggested that c-Kit could be used to isolate pancreatic progenitor cells and our new culture system permitted pancreatic progenitor cells to differentiate to mature endocrine cells.