Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013 (2013), Article ID 102120, 8 pages
http://dx.doi.org/10.1155/2013/102120
Clinical Study

Osteoprotegerin, Soluble Receptor Activator of Nuclear Factor-κB Ligand, and Subclinical Atherosclerosis in Children and Adolescents with Type 1 Diabetes Mellitus

12nd Department of Obstetrics and Gynecology, University of Athens, Aretaieio Hospital, Athens, Greece
22nd Department of Pediatrics, Diabetes & Metabolism Clinic, University of Athens, “P&A Kyriakou” Children's Hospital, Athens, Greece
3Radiology Department, “P&A Kyriakou” Children's Hospital, Athens, Greece
4Hormonal Laboratory, University of Athens, Aretaieio Hospital, Athens, Greece
5Department of Therapeutics, University of Athens, Alexandra Hospital, Athens, Greece

Received 25 June 2013; Revised 31 August 2013; Accepted 3 September 2013

Academic Editor: Faustino R. Pérez-López

Copyright © 2013 Irene Lambrinoudaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Shah, “Screening asymptomatic subjects for subclinical atherosclerosis. Can we, does it matter, and should we?” Journal of the American College of Cardiology, vol. 56, no. 2, pp. 98–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Järvisalo, L. Jartti, K. Näntö-Salonen et al., “Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children,” Circulation, vol. 104, no. 24, pp. 2943–2947, 2001. View at Google Scholar · View at Scopus
  3. K. Dahl-Jørgensen, J. R. Larsen, and K. F. Hanssen, “Atherosclerosis in childhood and adolescent type 1 diabetes: early disease, early treatment?” Diabetologia, vol. 48, no. 8, pp. 1445–1453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Pozza, S. Bechtold, W. Bonfig et al., “Age of onset of type 1 diabetes in children and carotid intima medial thickness,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 6, pp. 2053–2057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. E. McVeigh, W. Gibson, and P. K. Hamilton, “Cardiovascular risk in the young type 1 diabetes population with a low 10-year, but high lifetime risk of cardiovascular disease,” Diabetes, Obesity and Metabolism, vol. 15, no. 3, pp. 198–203, 2013. View at Publisher · View at Google Scholar
  6. G. S. Berenson, “Childhood risk factors predict adult risk associated with subclinical cardiovascular disease: the Bogalusa heart study,” The American Journal of Cardiology, vol. 90, no. 10, pp. 3L–7L, 2002. View at Google Scholar · View at Scopus
  7. H. D. Margeirsdottir, K. H. Stensaeth, J. R. Larsen, C. Brunborg, and K. Dahl-Jørgensen, “Early signs of atherosclerosis in diabetic children on intensive insulin treatment: a population-based study,” Diabetes Care, vol. 33, no. 9, pp. 2043–2048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Järvisalo, T. Lehtimäki, and O. T. Raitakari, “Determinants of arterial nitrate-mediated dilatation in children: role of oxidized low-density lipoprotein, endothelial function, and carotid intima-media thickness,” Circulation, vol. 109, no. 23, pp. 2885–2889, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Urbina, R. V. Williams, B. S. Alpert et al., “Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the american heart association,” Hypertension, vol. 54, no. 5, pp. 919–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Yavuz, A. Akcay, R. E. Omeroglu, R. Bundak, and M. Sukur, “Ultrasonic evaluation of early atherosclerosis in children and adolescents with type 1 diabetes mellitus,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 8, pp. 1131–1136, 2002. View at Google Scholar
  11. A. van Campenhout and J. Golledge, “Osteoprotegerin, vascular calcification and atherosclerosis,” Atherosclerosis, vol. 204, no. 2, pp. 321–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Galluzzi, S. Stagi, R. Salti et al., “Osteoprotegerin serum levels in children with type 1 diabetes: a potential modulating role in bone status,” European Journal of Endocrinology, vol. 153, no. 6, pp. 879–885, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. G. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications—part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation,” Diabetic Medicine, vol. 15, no. 7, pp. 539–553, 1998. View at Publisher · View at Google Scholar
  14. K. H. Lau, Y. K. Fung, Y. T. Cheung, W. K. Tsang, and M. Ying, “Repeatability and reproducibility of ultrasonographic measurement of carotid intima thickness,” Journal of Clinical Ultrasound, vol. 40, no. 2, pp. 79–84, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. T. P. Singh, H. Groehn, and A. Kazmers, “Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus,” Journal of the American College of Cardiology, vol. 41, no. 4, pp. 661–665, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Lamotte, C. Iliescu, C. Libersa, and F. Gottrand, “Increased intima-media thickness of the carotid artery in childhood: a systematic review of observational studies,” European Journal of Pediatrics, vol. 170, no. 6, pp. 719–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Parikh, E. B. Sochett, B. W. McCrindle, A. Dipchand, A. Daneman, and D. Daneman, “Carotid artery distensibility and cardiac function in adolescents with type 1 diabetes,” Journal of Pediatrics, vol. 137, no. 4, pp. 465–469, 2000. View at Google Scholar · View at Scopus
  18. P. Gunczler, R. Lanes, E. Lopez, S. Esaa, O. Villarroel, and R. Revel-Chion, “Cardiac mass and function, carotid artery intima-media thickness and lipoprotein (a) levels in children and adolescents with type 1 diabetes mellitus of short duration,” Journal of Pediatric Endocrinology and Metabolism, vol. 15, no. 2, pp. 181–186, 2002. View at Google Scholar · View at Scopus
  19. J. D. Dawson, M. Sonka, M. B. Blecha, W. Lin, and P. H. Davis, “Risk factors associated with aortic and carotid intima-media thickness in adolescents and young adults: the muscatine offspring study,” Journal of the American College of Cardiology, vol. 53, no. 24, pp. 2273–2279, 2009. View at Google Scholar · View at Scopus
  20. C. Jourdan, E. Wühl, M. Litwin et al., “Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents,” Journal of Hypertension, vol. 23, no. 9, pp. 1707–1715, 2005. View at Google Scholar · View at Scopus
  21. D. S. Freedman, D. A. Patel, S. R. Srinivasan et al., “The contribution of childhood obesity to adult carotid intima-media thickness: the Bogalusa heart study,” International Journal of Obesity, vol. 32, no. 5, pp. 749–756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. E. S. Kilpatrick, A. S. Rigby, and S. L. Atkin, “Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the diabetes control and complications trial,” Diabetes Care, vol. 30, no. 3, pp. 707–712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. D. M. Findlay and G. J. Atkins, “Relationship between serum RANKL and RANKL in bone,” Osteoporosis International, vol. 22, no. 10, pp. 2597–2602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Blázquez-Medela, L. García-Ortiz, M. A. Gómez-Marcos et al., “Osteoprotegerin is associated with cardiovascular risk in hypertension and/or diabetes,” European Journal of Clinical Investigation, vol. 42, no. 5, pp. 548–556, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. G. D. Xiang, H. L. Sun, and L. S. Zhao, “Changes of osteoprotegerin before and after insulin therapy in type 1 diabetic patients,” Diabetes Research and Clinical Practice, vol. 76, no. 2, pp. 199–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. L. M. Rasmussen, L. Tarnow, T. K. Hansen, H. H. Parving, and A. Flyvbjerg, “Plasma osteoprotegerin levels are associated with glycaemic status, systolic blood pressure, kidney function and cardiovascular mordibity in type 1 diabetic patients,” European Journal of Endocrinology, vol. 154, no. 1, pp. 75–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Akinci, T. Demir, A. Celtik et al., “Serum osteoprotegerin is associated with carotid intima media thickness in women with previous gestational diabetes,” Diabetes Research and Clinical Practice, vol. 82, no. 2, pp. 172–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Holecki, B. Zahorska-Markiewicz, J. Janowska et al., “The influence of weight loss on serum osteoprotegerin concentration in obese perimenopausal women,” Obesity, vol. 15, no. 8, pp. 1925–1929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Vik, E. B. Mathiesen, S. H. Johnsen et al., “Serum osteoprotegerin, sRANKL and carotid plaque formation and growth in a general population—the Tromsø study,” Journal of Thrombosis and Haemostasis, vol. 8, no. 5, pp. 898–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Dimitri, J. K. Wales, and N. Bishop, “Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass,” Bone, vol. 48, no. 2, pp. 189–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Wasilewska, A. A. Rybi-Szuminska, and W. Zoch-Zwierz, “Serum osteoprotegrin (OPG) and receptor activator of nuclear factor κB (RANKL) in healthy children and adolescents,” Journal of Pediatric Endocrinology and Metabolism, vol. 22, no. 12, pp. 1099–1104, 2009. View at Google Scholar · View at Scopus
  32. F. Buzi, G. Maccarinellif, B. Guaragni et al., “Serum osteoprotegerin and receptor activator of nuclear factors kB (RANKL) concentrations in normal children and in children with pubertal precocity, Turner's syndrome and rheumatoid arthritis,” Clinical Endocrinology, vol. 60, no. 1, pp. 87–91, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. E. S. Oh, E. Rhee, K. W. Oh et al., “Circulating osteoprotegerin levels are associated with age, waist-to-hip ratio, serum total cholesterol, and low-density lipoprotein cholesterol levels in healthy Korean women,” Metabolism, vol. 54, no. 1, pp. 49–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. H. Gannagé-Yared, C. Yaghi, B. Habre et al., “Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study,” European Journal of Endocrinology, vol. 158, no. 3, pp. 353–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Vik, E. B. Mathiesen, J. Brox et al., “Relation between serum osteoprotegerin and carotid intima media thickness in a general population—the Tromsø study,” Journal of Thrombosis and Haemostasis, vol. 8, no. 10, pp. 2133–2139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kiechl, G. Schett, G. Wenning et al., “Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease,” Circulation, vol. 109, no. 18, pp. 2175–2180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Kim, J. Leet, O. H. Ryu et al., “Serum osteoprotegerin levels are associated with inflammation and pulse wave velocity,” Clinical Endocrinology, vol. 63, no. 5, pp. 594–598, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Siepi, S. Marchesi, G. Vaudo et al., “Preclinical vascular damage in white postmenopausal women: the relevance of osteoprotegerin,” Metabolism, vol. 57, no. 3, pp. 321–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Kiechl, G. Schett, J. Schwaiger et al., “Soluble receptor activator of nuclear factor-κB ligand and risk for cardiovascular disease,” Circulation, vol. 116, no. 4, pp. 385–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Wagner and A. Fahrleitner-Pammer, “Levels of osteoprotegerin (OPG) and receptor activator for nuclear factor κ B ligand (RANKL) in serum: are they of any help?” Wiener Medizinische Wochenschrift, vol. 160, no. 17-18, pp. 452–457, 2010. View at Publisher · View at Google Scholar · View at Scopus