Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013 (2013), Article ID 290734, 6 pages
http://dx.doi.org/10.1155/2013/290734
Clinical Study

The Effects of Pioglitazone on Biochemical Markers of Bone Turnover in the Patients with Type 2 Diabetes

1Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
2Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China

Received 30 March 2013; Revised 6 June 2013; Accepted 6 June 2013

Academic Editor: Ilias Migdalis

Copyright © 2013 Wen-hua Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. V. Schwartz, T. A. Hillier, D. E. Sellmeyer et al., “Older women with diabetes have a higher risk of falls: a prospective study,” Diabetes Care, vol. 25, no. 10, pp. 1749–1754, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. E. Bonds, J. C. Larson, A. V. Schwartz et al., “Risk of fracture in women with type 2 diabetes: the women's health initiative observational study,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3404–3410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Janghorbani, R. M. Van Dam, W. C. Willett, and F. B. Hu, “Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture,” American Journal of Epidemiology, vol. 166, no. 5, pp. 495–505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Janghorbani, D. Feskanich, W. C. Willett, and F. Hu, “Prospective study of diabetes and risk of hip fracture: the nurses' health study,” Diabetes Care, vol. 29, no. 7, pp. 1573–1578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Vestergaard, “Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis,” Osteoporosis International, vol. 18, no. 4, pp. 427–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. Kahn, B. Zinman, J. M. Lachin et al., “Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT),” Diabetes Care, vol. 31, no. 5, pp. 845–851, 2008. View at Google Scholar
  7. A. V. Schwartz, D. E. Sellmeyer, E. Vittinghoff et al., “Thiazolidinedione use and bone loss in older diabetic adults,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3349–3354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Ali, R. S. Weinstein, S. A. Stewart, A. M. Parfitt, S. C. Manolagas, and R. L. Jilka, “Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation,” Endocrinology, vol. 146, no. 3, pp. 1226–1235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. O. Rzonca, L. J. Suva, D. Gaddy, D. C. Montague, and B. Lecka-Czernik, “Bone is a target for the antidiabetic compound rosiglitazone,” Endocrinology, vol. 145, no. 1, pp. 401–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Sorocéanu, D. Miao, X.-Y. Bai, H. Su, D. Goltzman, and A. C. Karaplis, “Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis,” Journal of Endocrinology, vol. 183, no. 1, pp. 203–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. O. P. Lazarenko, S. O. Rzonca, W. R. Hogue, F. L. Swain, L. J. Suva, and B. Lecka-Czernik, “Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone,” Endocrinology, vol. 148, no. 6, pp. 2669–2680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Berberoglu, A. Gursoy, N. Bayraktar, A. C. Yazici, N. B. Tutuncu, and N. G. Demirag, “Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3523–3530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Grey, M. Bolland, G. Gamble et al., “The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 4, pp. 1305–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Jeon, J. A. Kim, S. H. Kwon et al., “Activation of peroxisome proliferator-activated receptor-γ inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 23270–23277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Khan and Y. Abu-Amer, “Activation of peroxisome proliferator-activated receptor-γ inhibits differentiation of preosteoblasts,” Journal of Laboratory and Clinical Medicine, vol. 142, no. 1, pp. 29–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Lecka-Czernik, E. J. Moerman, D. F. Grant, J. M. Lehmann, S. C. Manolagas, and R. L. Jilka, “Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation,” Endocrinology, vol. 143, no. 6, pp. 2376–2384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Yki-Järvinen, “Thiazolidinediones,” The New England Journal of Medicine, vol. 351, no. 11, pp. 1106–1118, 2004. View at Google Scholar
  18. S. Watanabe, Y. Takeuchi, S. Fukumoto, H. Fujita, T. Nakano, and T. Fujita, “Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients,” Journal of Bone and Mineral Metabolism, vol. 21, no. 3, pp. 166–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Zanchi, A. Pechère-Bertschi, M. Burnier, and O. Bonny, “Effects of pioglitazone on renal calcium excretion,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. E1482–E1485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Kanazawa, T. Yamaguchi, S. Yano et al., “Baseline atherosclerosis parameter could assess the risk of bone loss during pioglitazone treatment in type 2 diabetes mellitus,” Osteoporosis International, vol. 21, no. 12, pp. 2013–2018, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Glintborg, M. Andersen, C. Hagen, L. Heickendorff, and A. P. Hermann, “Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 5, pp. 1696–1701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Lecka-Czernik, I. Gubrij, E. J. Moerman et al., “Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2,” J Cell Biochem, vol. 74, no. 3, pp. 357–371, 1999. View at Google Scholar
  23. R. Okazaki, M. Miura, M. Toriumi et al., “Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus,” Endocrine Journal, vol. 46, no. 6, pp. 795–801, 1999. View at Google Scholar · View at Scopus
  24. J. M. Gimble, C. E. Robinson, X. Wu et al., “Peroxisome proliferator-activated aeceptor-γ activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells,” Molecular Pharmacology, vol. 50, no. 5, pp. 1087–1094, 1996. View at Google Scholar · View at Scopus
  25. A. M. Schwab, S. Granholm, E. Persson, B. Wilkes, U. H. Lerner, and H. H. Conaway, “Stimulation of resorption in cultured mouse calvarial bones by thiazolidinediones,” Endocrinology, vol. 146, no. 10, pp. 4349–4361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Yaturu, B. Bryant, and S. K. Jain, “Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men,” Diabetes Care, vol. 30, no. 6, pp. 1574–1576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Mancini, G. Mazziotti, M. Doga et al., “Vertebral fractures in males with type 2 diabetes treated with rosiglitazone,” Bone, vol. 45, no. 4, pp. 784–788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. L. Rubin, Y. Zhao, A. M. Kalus, and E. R. Simpson, “Peroxisome proliferator-activated receptor γ ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy,” Cancer Research, vol. 60, no. 6, pp. 1604–1608, 2000. View at Google Scholar · View at Scopus
  29. B. Charbonnel, G. Schernthaner, P. Brunetti et al., “Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes,” Diabetologia, vol. 48, no. 6, pp. 1093–1104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. J. Scheen, M. H. Tan, D. J. Betteridge, K. Birkeland, O. Schmitz, and B. Charbonnel, “Long-term glycaemic effects of pioglitazone compared with placebo as add-on treatment to metformin or sulphonylurea monotherapy in PROactive (PROactive 18),” Diabetic Medicine, vol. 26, no. 12, pp. 1242–1249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Betteridge, “Effects of pioglitazone on lipid and lipoprotein metabolism,” Diabetes, Obesity and Metabolism, vol. 9, no. 5, pp. 640–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Perez, M. Khan, T. Johnson, and M. Karunaratne, “Pioglitazone plus a sulphonylurea or metformin is associated with increased lipoprotein particle size in patients with type 2 diabetes,” Diabetes & Vascular Disease Research, vol. 1, no. 1, pp. 44–50, 2004. View at Google Scholar · View at Scopus