Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 321074, 8 pages
http://dx.doi.org/10.1155/2013/321074
Research Article

Self-Repair of Rat Cortical Bone Microdamage after Fatigue Loading In Vivo

1Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
2Department of Radiology, University of Michigan Hospitals, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA

Received 3 January 2013; Accepted 24 March 2013

Academic Editor: Peng-Fei Shan

Copyright © 2013 Bo Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Taylor and T. Clive Lee, “Measuring the shape and size of microcracks in bone,” Journal of Biomechanics, vol. 31, no. 12, pp. 1177–1180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Dai, E. Y. Liao, C. Yang, X. P. Wu, and Y. Jiang, “Microcracks: an alternative index for evaluating bone biomechanical quality,” Journal of Bone and Mineral Metabolism, vol. 22, no. 3, pp. 215–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Parfitt, “Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression,” Bone, vol. 30, no. 1, pp. 5–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Mohsin, F. J. O'Brien, and T. C. Lee, “Osteonal crack barriers in ovine compact bone,” Journal of Anatomy, vol. 208, no. 1, pp. 81–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Diab and D. Vashishth, “Morphology, localization and accumulation of in vivo microdamage in human cortical bone,” Bone, vol. 40, no. 3, pp. 612–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Verborgt, G. J. Gibson, and M. B. Schaffler, “Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo,” Journal of Bone and Mineral Research, vol. 15, no. 1, pp. 60–67, 2000. View at Google Scholar · View at Scopus
  7. S. J. Sample, Z. Hao, A. P. Wilson, and P. Muir, “Role of calcitonin gene-related peptide in bone repair after cyclic fatigue loading,” PLoS ONE, vol. 6, no. 6, Article ID e20386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Macione, N. B. Kavukcuoglu, R. S. A. Nesbitt, A. B. Mann, N. Guzelsu, and S. P. Kotha, “Hierarchies of damage induced loss of mechanical properties in calcified bone after in vivo fatigue loading of rat ulnae,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 6, pp. 841–848, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. E. Tami, P. Nasser, M. B. Schaffler, and M. L. Knothe Tate, “Noninvasive fatigue fracture model of the rat ulna,” Journal of Orthopaedic Research, vol. 21, no. 6, pp. 1018–1024, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. J. Sample, R. J. Collins, A. P. Wilson et al., “Systemic effects of ulna loading in male rats during functional adaptation,” Journal of Bone and Mineral Research, vol. 25, no. 9, pp. 2016–2028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. D. Chapurlat and P. D. Delmas, “Bone microdamage: a clinical perspective,” Osteoporosis International, vol. 20, no. 8, pp. 1299–1308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. C. Herman, L. Cardoso, R. J. Majeska, K. J. Jepsen, and M. B. Schaffler, “Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage,” Bone, vol. 47, no. 4, pp. 766–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. I. Waldorff, K. B. Christenson, L. A. Cooney, and S. A. Goldstein, “Microdamage repair and remodeling requires mechanical loading,” Journal of Bone and Mineral Research, vol. 25, no. 4, pp. 734–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Cardoso, B. C. Herman, O. Verborgt, D. Laudier, R. J. Majeska, and M. B. Schaffler, “Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue,” Journal of Bone and Mineral Research, vol. 24, no. 4, pp. 597–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. B. Burr, “Why bones bend but don't break,” Journal of Musculoskeletal and Neuronal Interactions, vol. 11, no. 4, pp. 270–285, 2011. View at Google Scholar
  16. M. D. Landrigan and R. K. Roeder, “Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone,” Journal of Biomechanics, vol. 42, no. 9, pp. 1212–1217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. D. Roberts, T. J. Santner, and R. T. Hart, “Local bone formation due to combined mechanical loading and intermittent hPTH-(1-34) treatment and its correlation to mechanical signal distributions,” Journal of Biomechanics, vol. 42, no. 15, pp. 2431–2438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Arregui-Dalmases, J. H. Ash, E. Del Pozo, J. R. Kerrigan, and J. Crandall, “Failure of the lumbar pedicles under bending loading—biomed 2010,” Biomedical Sciences Instrumentation, vol. 46, pp. 148–153, 2010. View at Google Scholar · View at Scopus
  19. T. Diab and D. Vashishth, “Effects of damage morphology on cortical bone fragility,” Bone, vol. 37, no. 1, pp. 96–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. N. Yeni, F. J. Hou, T. Ciarelli, D. Vashishth, and D. P. Fyhrie, “Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone,” Annals of Biomedical Engineering, vol. 31, no. 6, pp. 726–732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. G. R. Wohl, D. A. Towler, and M. J. Silva, “Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair,” Bone, vol. 44, no. 2, pp. 320–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. W. H. Cheung, S. K. H. Chow, M. H. Sun, L. Qin, and K. S. Leung, “Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing,” Ultrasound in Medicine and Biology, vol. 37, no. 2, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. L. E. Mulcahy, D. Taylor, T. C. Lee, and G. P. Duffy, “RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells,” Bone, vol. 48, no. 2, pp. 182–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. O'Neal, T. Diab, M. R. Allen, B. Vidakovic, D. B. Burr, and R. E. Guldberg, “One year of alendronate treatment lowers microstructural stresses associated with trabecular microdamage initiation,” Bone, vol. 47, no. 2, pp. 241–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Brennan, O. D. Kennedy, T. C. Lee, S. M. Rackard, and F. J. Obrien, “Effects of estrogen deficiency and bisphosphonate therapy on osteocyte viability and microdamage accumulation in an ovine model of osteoporosis,” Journal of Orthopaedic Research, vol. 29, no. 3, pp. 419–424, 2011. View at Publisher · View at Google Scholar · View at Scopus