Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 410348, 10 pages
Research Article

A Two-Pathway Mathematical Model of the LH Response to GnRH that Predicts Self-Priming

1Centre for Neuroendocrinology, University of Otago, Christchurch, New Zealand
2MacDiarmid Institute for Advanced Materials and Nanoengineering, University of Otago, Christchurch, New Zealand
3Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
4Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
5Department of Mathematics, University of Canterbury, Christchurch, New Zealand

Received 22 August 2013; Accepted 2 October 2013

Academic Editor: Stanko S. Stojilkovic

Copyright © 2013 J. J. Evans et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An acute response of LH to a stimulatory pulse of GnRH is modelled as a result of a pathway (Pathway I) that consists of two compartments including a single (rate limiting) intermediate. In addition, a second pathway (Pathway II) was added, consisting of an intermediate transcription factor and subsequently a synthesised protein. Pathway II had a delayed effect on LH release due to the time taken to produce the intermediate protein. The model included synergism between these two pathways, which yielded an augmented response. The model accounts for a number of observations, including GnRH self-priming and the biphasic pattern of LH response. The same model was used to fit the data of the LH response when gonadotrophs responded to the addition of oxytocin in the response with a shoulder on the profile. Pathway I is able to be conceptualised as the basic Ca2+-mediated pathway. Pathway II contains features characteristic of the cAMP-mediated pathway. Thus, we have provided an explanation for details of the nature of the profile of LH secretion and additionally enabled incorporation of cAMP in an integrating model. The study investigated the possibility of two interacting pathways being at the basis of both the shoulder on the LH surges and self-priming, and the model illustrates that this appears to be highly likely.