Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 483145, 21 pages
http://dx.doi.org/10.1155/2013/483145
Review Article

The Role of “Mixed” Orexigenic and Anorexigenic Signals and Autoantibodies Reacting with Appetite-Regulating Neuropeptides and Peptides of the Adipose Tissue-Gut-Brain Axis: Relevance to Food Intake and Nutritional Status in Patients with Anorexia Nervosa and Bulimia Nervosa

1Institute of Endocrinology, Laboratory of Clinical and Experimental Neuroendocrinology, Narodni 8, 116 94 Prague 1, Czech Republic
2Psychiatric Clinic, First Faculty of Medicine, Charles University, Ke Karlovu 11, 121 08 Prague 2, Czech Republic

Received 28 March 2013; Accepted 11 July 2013

Academic Editor: Carlos Dieguez

Copyright © 2013 Kvido Smitka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. K. G. Hsu, “Epidemiology of the eating disorders,” Psychiatric Clinics of North America, vol. 19, no. 4, pp. 681–700, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Vitiello and I. Lederhendler, “Research on eating disorders: current status and future prospects,” Biological Psychiatry, vol. 47, no. 9, pp. 777–786, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. W. H. Kaye, A. Wagner, J. L. Fudge, and M. Paulus, “Neurocircuity of eating disorders,” Current Topics in Behavioral Neurosciences, vol. 6, pp. 37–57, 2011. View at Google Scholar
  4. DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 4th edition, 2000.
  5. M. M. Meguid, Z.-J. Yang, and J. R. Gleason, “The gut-brain brain-gut axis in anorexia: toward an understanding of food intake regulation,” Nutrition, vol. 12, no. 1, pp. S57–S62, 1996. View at Google Scholar · View at Scopus
  6. K. Smitka, H. Papezova, K. Vondra, M. Hill, V. Hainer, and J. Nedvidkova, “A higher response of plasma neuropeptide Y, growth hormone, leptin levels and extracellular glycerol levels in subcutaneous abdominal adipose tissue to Acipimox during exercise in patients with bulimia nervosa: single-blind, randomized, microdialysis study,” Nutrition and Metabolism, vol. 8, article 81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Smitka, H. Papezova, K. Vondra, M. Hill, V. Hainer, and J. Nedvidkova, “Short-term exercise combined with Acipimox administration induces an increase in plasma ACTH levels and its subsequent fall in the recovery phase in bulimic women,” Regulatory Peptides, vol. 182, pp. 45–52, 2013. View at Google Scholar
  8. S. J. Konturek, J. W. Konturek, T. Pawlik, and T. Brzozowski, “Brain-gut axis and its role in the control of food intake,” Journal of Physiology and Pharmacology, vol. 55, no. 1, pp. 137–154, 2004. View at Google Scholar · View at Scopus
  9. J. A. Romijn, E. P. Corssmit, L. M. Havekes, and H. Pijl, “Gut-brain axis,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 4, pp. 518–521, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Roth and T. Reinehr, “Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention,” Archives of Pediatrics and Adolescent Medicine, vol. 164, no. 2, pp. 131–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Sedlackova, J. Kopeckova, H. Papezova et al., “Changes of plasma obestatin, ghrelin and NPY in anorexia and bulimia nervosa before and after a high-carbohydrate breakfast,” Physiological Research, vol. 60, pp. 165–173, 2011. View at Google Scholar
  12. K. Smitka, H. Papezova, H. Kvasnickova et al., “Increased response of growth hormone and ghrelin to exercise and anti-lipolytic drug in bulimia nervosa patients,” in Proceedings of the 13th International Congress of Endocrinology, A. Godoy-Matos and J. Wass, Eds., pp. 445–449, International Proceedings Division, Medimond Srl, Rio de Janeiro, Brazil, November 2008, http://www.medimond.com/proceedings/moreinfo/20081108.htm.
  13. J. Nedvidkova, K. Smitka, H. Papezova, K. Vondra, M. Hill, and V. Hainer, “Acipimox during exercise points to an inhibitory feedback of GH on ghrelin secretion in bulimic and healthy women,” Regulatory Peptides, vol. 167, no. 1, pp. 134–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Sedlackova, J. Kopeckova, H. Papezova et al., “Comparison of high-carbohydrate and high-protein breakfast effect on plasma ghrelin, obestatin, NPY and PYY levels in women with anorexia and bulimia nervosa,” Nutrition & Metabolism, vol. 9, p. 52, 2012. View at Google Scholar
  15. M. Arosio, C. L. Ronchi, C. Gebbia, V. Cappiello, P. Beck-Peccoz, and M. Peracchi, “Stimulatory effects of ghrelin on circulating somatostatin and pancreatic polypeptide levels,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 2, pp. 701–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Stanley, K. Wynne, B. McGowan, and S. Bloom, “Hormonal regulation of food intake,” Physiological Reviews, vol. 85, no. 4, pp. 1131–1158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. V. Zhang, P.-G. Ren, O. Avsian-Kretchmer et al., “Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake,” Science, vol. 310, no. 5750, pp. 996–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Prince, S. J. Brooks, D. Stahl, and J. Treasure, “Systematic review and meta-analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders,” American Journal of Clinical Nutrition, vol. 89, no. 3, pp. 755–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. W. H. Kaye, G. K. Frank, U. F. Bailer et al., “Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies,” Physiology and Behavior, vol. 85, no. 1, pp. 73–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. W. H. Kaye, U. F. Bailer, G. K. Frank, A. Wagner, and S. E. Henry, “Brain imaging of serotonin after recovery from anorexia and bulimia nervosa,” Physiology and Behavior, vol. 86, no. 1-2, pp. 15–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Kontis and E. Theochari, “Dopamine in anorexia nervosa: a systematic review,” Behavioural Pharmacology, vol. 23, pp. 496–515, 2012. View at Google Scholar
  22. D. J. Haleem, “Serotonin neurotransmission in anorexia nervosa,” Behavioural Pharmacology, vol. 23, pp. 478–495, 2012. View at Google Scholar
  23. W. H. Kaye, C. E. Wierenga, U. F. Bailer, A. N. Simmons, and A. Bischoff-Grethe, “Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa,” Trends in Neurosciences, vol. 36, pp. 110–120, 2013. View at Google Scholar
  24. K. Nonogaki, K. Ohashi-Nozue, and Y. Oka, “A negative feedback system between brain serotonin systems and plasma active ghrelin levels in mice,” Biochemical and Biophysical Research Communications, vol. 341, no. 3, pp. 703–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Bradley, J. P. R. Mansfield, and E. Maratos-Flier, “Neuropeptides, including neuropeptide y and melanocortins, mediate lipolysis in murine adipocytes,” Obesity Research, vol. 13, no. 4, pp. 653–661, 2005. View at Google Scholar · View at Scopus
  26. K. H. Schulpis, I. Papassotiriou, M. Vounatsou, G. A. Karikas, S. Tsakiris, and G. P. Chrousos, “Morning preprandial plasma ghrelin and catecholamine concentrations in patients with phenylketonuria and normal controls: evidence for catecholamine-mediated ghrelin regulation,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 3983–3987, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Nedvídková, K. Smitka, V. Kopský, and V. Hainer, “Adiponectin, an adipocyte-derived protein,” Physiological Research, vol. 54, no. 2, pp. 133–140, 2005. View at Google Scholar · View at Scopus
  28. I. Dostálová, K. Smitka, H. Papežová, H. Kvasničková, and J. Nedvídková, “The role of adiponectin in increased insulin sensitivity of patients with anorexia nervosa,” Vnitrni Lekarstvi, vol. 52, no. 10, pp. 887–890, 2006. View at Google Scholar · View at Scopus
  29. I. Dostálová, K. Smitka, H. Papežová, H. Kvasničková, and J. Nedvídková, “Increased insulin sensitivity in patients with anorexia nervosa: the role of adipocytokines,” Physiological Research, vol. 56, no. 5, pp. 587–594, 2007. View at Google Scholar · View at Scopus
  30. I. Dostalova, V. Bartak, H. Papezova, and J. Nedvidkova, “The effect of short-term exercise on plasma leptin levels in patients with anorexia nervosa,” Metabolism, vol. 56, no. 4, pp. 497–503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Vargovic, J. Ukropec, M. Laukova et al., “Adipocytes as a new source of catecholamine production,” FEBS Letters, vol. 585, no. 14, pp. 2279–2284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Kvetnansky, J. Ukropec, M. Laukova, B. Manz, K. Pacak, and P. Vargovic, “Stress stimulates production of catecholamines in rat adipocytes,” Cellular and Molecular Neurobiology, vol. 32, no. 5, pp. 801–813, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Krykorkova, K. Pacak, V. Bartak, H. Papezova, M. Matejkova-Behanova, and J. Nedvidkova, “Increased basal and maprotiline-stimulated norepinephrine levels in abdominal fat in patients with anorexia nervosa,” Diabetologie Metabolismus Endokrinologie Výživa, supplement 3, p. 28, 2001. View at Google Scholar
  34. V. Bartak, J. Nedvidkova, S. Vybiral et al., “Adrenergic regulation of lipolysis in patients with anorexia nervosa during exercise,” Physiological Research, vol. 52, p. 24P, 2003. View at Google Scholar
  35. J. Nedvidkova, I. Dostalova, V. Bartak, H. Papezova, and K. Pacak, “Increased subcutaneous abdominal tissue norepinephrine levels in patients with anorexia nervosa: an in vivo microdialysis study,” Physiological Research, vol. 53, pp. 409–413, 2004. View at Google Scholar
  36. V. Bartak, S. Vybiral, H. Papezova, I. Dostalova, K. Pacak, and J. Nedvidkova, “Basal and exercise-induced sympathetic nervous activity and lipolysis in adipose tissue of patients with anorexia nervosa,” European Journal of Clinical Investigation, vol. 34, no. 5, pp. 371–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Brambilla, “Aetiopathogenesis and pathophysiology of bulimia nervosa: biological bases and implications for treatment,” CNS Drugs, vol. 15, no. 2, pp. 119–136, 2001. View at Google Scholar · View at Scopus
  38. Y. Takimoto, A. Inui, H. Kumano, and T. Kuboki, “Orexigenic/anorexigenic signals in Bulimia nervosa,” Current Molecular Medicine, vol. 3, no. 4, pp. 349–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. C. Jimerson and B. E. Wolfe, “Neuropeptides in eating disorders,” CNS Spectrums, vol. 9, no. 7, pp. 516–522, 2004. View at Google Scholar · View at Scopus
  40. J. A. Harrold, “Hypothalamic control of energy balance,” Current Drug Targets, vol. 5, no. 3, pp. 207–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Torsello, F. Brambilla, L. Tamiazzo et al., “Central dysregulations in the control of energy homeostasis and endocrine alterations in anorexia and bulimia nervosa,” Journal of Endocrinological Investigation, vol. 30, no. 11, pp. 962–976, 2007. View at Google Scholar · View at Scopus
  42. K. Nunn, I. Frampton, and B. Lask, “Anorexia nervosa—a noradrenergic dysregulation hypothesis,” Medical Hypotheses, vol. 78, no. 5, pp. 580–584, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Corcos, F. Atger, P. Lévy-Soussan et al., “Bulimia nervosa and autoimmunity,” Psychiatry Research, vol. 87, no. 1, pp. 77–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. S. O. Fetissov, M. Hamze Sinno, Q. Coquerel et al., “Emerging role of autoantibodies against appetite-regulating neuropeptides in eating disorders,” Nutrition, vol. 24, no. 9, pp. 854–859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. S. O. Fetissov, J. Harro, M. Jaanisk et al., “Autoantibodies against neuropeptides are associated with psychological traits in eating disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 41, pp. 14865–14870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. O. Fetissov, “In search of the missing link in the regulation of appetite and body weight,” Nutrition, vol. 25, no. 3, pp. 252–254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. O. Fetissov, M. Hamze Sinno, M. Coëffier et al., “Autoantibodies against appetite-regulating peptide hormones and neuropeptides: putative modulation by gut microflora,” Nutrition, vol. 24, no. 4, pp. 348–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Terashi, A. Asakawa, T. Harada et al., “Ghrelin reactive autoantibodies in restrictive anorexia nervosa,” Nutrition, vol. 27, no. 4, pp. 407–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. R. P. Radermecker, E. Renard, and A. J. Scheen, “Circulating insulin antibodies: influence of continuous subcutaneous or intraperitoneal insulin infusion, and impact on glucose control,” Diabetes/Metabolism Research and Reviews, vol. 25, no. 6, pp. 491–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Franke, T. S. Galloway, and T. J. Wilkin, “Developments in the prediction of type 1 diabetes mellitus, with special reference to insulin autoantibodies,” Diabetes/Metabolism Research and Reviews, vol. 21, no. 5, pp. 395–415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Prioletta, G. Muscogiuri, G. P. Sorice et al., “In anorexia nervosa, even a small increase in abdominal fat is responsible for the appearance of insulin resistance,” Clinical Endocrinology, vol. 75, no. 2, pp. 202–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Ariyasu, K. Takaya, T. Tagami et al., “Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 4753–4758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Zhu, Y. Cao, K. Voogd, and D. F. Steiner, “On the processing of proghrelin to ghrelin,” Journal of Biological Chemistry, vol. 281, pp. 38867–38870, 2006. View at Google Scholar
  54. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Yang, M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein, “Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone,” Cell, vol. 132, no. 3, pp. 387–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. D. Müller, M. H. Tschöp, I. Jarick et al., “Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa,” Journal of Psychiatric Research, vol. 45, no. 5, pp. 706–711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Kirchner, J. A. Gutierrez, P. J. Solenberg et al., “GOAT links dietary lipids with the endocrine control of energy balance,” Nature Medicine, vol. 15, pp. 741–745, 2009. View at Google Scholar
  58. E. Arvat, L. Di Vito, F. Broglio et al., “Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans,” Journal of Endocrinological Investigation, vol. 23, no. 8, pp. 493–495, 2000. View at Google Scholar · View at Scopus
  59. Y. Date, N. Murakami, K. Toshinai et al., “The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats,” Gastroenterology, vol. 123, no. 4, pp. 1120–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Nonogaki, “Ghrelin and feedback systems,” Vitamins and Hormones, vol. 77, pp. 149–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Asakawa, A. Inui, M. Fujimiya et al., “Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin,” Gut, vol. 54, no. 1, pp. 18–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Cassoni, M. Papotti, C. Ghè et al., “Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 4, pp. 1738–1745, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. W. A. Banks, M. Tschöp, S. M. Robinson, and M. L. Heiman, “Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, no. 2, pp. 822–827, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. C.-Y. Chen, A. Inui, A. Asakawa et al., “Des-acyl ghrelin acts by CRF type 2 receptors to disrupt fasted stomach motility in conscious rats,” Gastroenterology, vol. 129, no. 1, pp. 8–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Inhoff, B. Wiedenmann, B. F. Klapp, H. Mönnikes, and P. Kobelt, “Is desacyl ghrelin a modulator of food intake?” Peptides, vol. 30, no. 5, pp. 991–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Sedláčková, I. Dostálová, V. Hainer et al., “Simultaneous decrease of plasma obestatin and ghrelin levels after a high-carbohydrate breakfast in healthy women,” Physiological Research, vol. 57, no. 1, pp. S29–S37, 2008. View at Google Scholar · View at Scopus
  67. H. Y. Chen, M. E. Trumbauer, A. S. Chen et al., “Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein,” Endocrinology, vol. 145, no. 6, pp. 2607–2612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Hozumi, K. Yamanouchi, and M. Nishihara, “Involvement of neuropeptide Y in hyperphagia in human growth hormone transgenic rats,” Journal of Veterinary Medical Science, vol. 68, no. 9, pp. 959–965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Date, T. Shimbara, S. Koda et al., “Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus,” Cell Metabolism, vol. 4, no. 4, pp. 323–331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Ogiso, A. Asakawa, H. Amitani, and A. Inui, “Ghrelin and anorexia nervosa: a psychosomatic perspective,” Nutrition, vol. 27, no. 10, pp. 988–993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Takaya, H. Ariyasu, N. Kanamoto et al., “Ghrelin strongly stimulates growth hormone (GH) release in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4908–4911, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. E. T. Vestergaard, R. Dall, K. H. W. Lange, M. Kjaer, J. S. Christiansen, and J. O. L. Jorgensen, “The ghrelin response to exercise before and after growth hormone administration,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 1, pp. 297–303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Shiiya, M. Nakazato, M. Mizuta et al., “Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 240–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. D. E. Cummings, D. S. Weigle, R. Scott Frayo et al., “Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery,” New England Journal of Medicine, vol. 346, no. 21, pp. 1623–1630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. A. J. Van Der Lely, “Ghrelin and new metabolic frontiers,” Hormone Research, vol. 71, no. 1, pp. 129–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Kojima and K. Kangawa, “Ghrelin: structure and function,” Physiological Reviews, vol. 85, no. 2, pp. 495–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Liu, H. Lin, P. Cheng, X. Hu, and H. Lu, “Effects of ghrelin on the proliferation and differentiation of 3T3-L1 preadipocytes,” Journal of Huazhong University of Science and Technology, vol. 29, no. 2, pp. 227–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Rodríguez, J. Gómez-Ambrosi, V. Catalán et al., “Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes,” International Journal of Obesity, vol. 33, pp. 541–552, 2009. View at Google Scholar
  80. F. Broglio, C. Gottero, F. Prodam et al., “Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 3062–3065, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. N. M. Thompson, D. A. S. Gill, R. Davies et al., “Ghrelin and des-octanoyl ghrelin promote adipogenesis directlyin vivo by a mechanism independent of GHS-R1a,” Endocrinology, vol. 145, no. 1, pp. 234–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. J. Tebbe, C. G. Tebbe, S. Mronga, M. Ritter, and M. K. H. Schäfer, “Central neuropeptide Y receptors are involved in 3rd ventricular ghrelin induced alteration of colonic transit time in conscious fed rats,” BMC Gastroenterology, vol. 5, article 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Kos, A. L. Harte, P. J. O'Hare, S. Kumar, and P. G. McTernan, “Ghrelin and the differential regulation of des-acyl (DSG) and oct-anoyl ghrelin (OTG) in human adipose tissue (AT),” Clinical Endocrinology, vol. 70, no. 3, pp. 383–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Misra, K. K. Miller, V. Stewart et al., “Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 9, pp. 5082–5087, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Otto, U. Cuntz, E. Fruehauf et al., “Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa,” European Journal of Endocrinology, vol. 145, no. 5, pp. 669–673, 2001. View at Google Scholar · View at Scopus
  86. B. Otto, M. Tschöp, and U. Cuntz, “Letter to the Editor: similar fasting ghrelin levels in binge eating/purging anorexia nervosa and restrictive anorexia nervosa,” Psychoneuroendocrinology, vol. 29, no. 5, pp. 692–693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Troisi, G. Di Lorenzo, I. Lega et al., “Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones,” Neuroendocrinology, vol. 81, no. 4, pp. 259–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Yin, Y. Li, G. Xu, W. An, and W. Zhang, “Ghrelin fluctuation, what determines its production?” Acta Biochimica et Biophysica Sinica, vol. 41, no. 3, pp. 188–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Karczewska-Kupczewska, M. Straczkowski, A. Adamska et al., “Increased suppression of serum ghrelin concentration by hyperinsulinemia in women with anorexia nervosa,” European Journal of Endocrinology, vol. 162, no. 2, pp. 235–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Janas-Kozik, I. Krupka-Matuszczyk, I. Malinowska-Kolodziej, and J. Lewin-Kowalik, “Total ghrelin plasma level in patients with the restrictive type of anorexia nervosa,” Regulatory Peptides, vol. 140, no. 1-2, pp. 43–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Nedvidkova, I. Krykorkova, V. Bartak et al., “Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1678–1682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Hotta, R. Ohwada, H. Katakami, T. Shibasaki, N. Hizuka, and K. Takano, “Plasma levels of intact and degraded ghrelin and their responses to glucose infusion in anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5707–5712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. N. Germain, B. Galusca, D. Grouselle et al., “Ghrelin and obestatin circadian levels differentiate bingeing-purging from restrictive anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 6, pp. 3057–3062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Scacchi, A. I. Pincelli, and F. Cavagnini, “Nutritional status in the neuroendocrine control of growth hormone secretion: the model of anorexia nervosa,” Frontiers in Neuroendocrinology, vol. 24, no. 3, pp. 200–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. R. K. Støving, M. Andersen, A. Flyvbjerg et al., “Indirect evidence for decreased hypothalamic somatostatinergic tone in anorexia nervosa,” Clinical Endocrinology, vol. 56, no. 3, pp. 391–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Gianotti, S. Fassino, G. A. Daga et al., “Effects of free fatty acids and acipimox, a lipolysis inhibitor, on the somatotroph responsiveness to ghrh in anorexia nervosa,” Clinical Endocrinology, vol. 52, no. 6, pp. 713–720, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Broglio, L. Gianotti, S. Destefanis et al., “The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state,” Clinical Endocrinology, vol. 60, no. 5, pp. 592–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Misra and A. Klibanski, “The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism,” Neuroendocrinology, vol. 93, no. 2, pp. 65–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. P. K. Fazeli, E. A. Lawson, R. Prabhakaran et al., “Effects of recombinant human growth hormone in anorexia nervosa: a randomized, placebo-controlled study,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 11, pp. 4889–4897, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. T. F. Hasan and H. Hasan, “Anorexia nervosa: a unified neurological perspective,” International Journal of Medical Sciences, vol. 8, no. 8, pp. 679–703, 2011. View at Google Scholar · View at Scopus
  101. P. K. Fazeli, M. Misra, M. Goldstein, K. K. Miller, and A. Klibanski, “Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 369–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Monteleone, R. Carratù, M. Cartenì et al., “Intestinal permeability is decreased in anorexia nervosa,” Molecular Psychiatry, vol. 9, no. 1, pp. 76–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Naisberg, I. Modai, and A. Weizman, “Metabolic bioenergy homeostatic disruption: a cause of anorexia nervosa,” Medical Hypotheses, vol. 56, no. 4, pp. 454–461, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Hornig and W. I. Lipkin, “Immune-mediated animal models of Tourette syndrome,” Neuroscience & Biobehavioral Reviews, vol. 37, pp. 1120–1138, 2013. View at Google Scholar
  105. N. Germain, B. Galusca, D. Grouselle et al., “Ghrelin/obestatin ratio in two populations with low bodyweight: constitutional thinness and anorexia nervosa,” Psychoneuroendocrinology, vol. 34, no. 3, pp. 413–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Nakai, H. Hosoda, K. Nin et al., “Plasma levels of active form of ghrelin during oral glucose tolerance test in patients with anorexia nervosa,” European Journal of Endocrinology, vol. 149, no. 1, pp. R1–R3, 2003. View at Google Scholar · View at Scopus
  107. T. Harada, T. Nakahara, D. Yasuhara et al., “Obestatin, acyl ghrelin, and des-acyl ghrelin responses to an oral glucose tolerance test in the restricting type of anorexia nervosa,” Biological Psychiatry, vol. 63, no. 2, pp. 245–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Tanaka, T. Naruo, T. Muranaga et al., “Increased fasting plasma ghrelin levels in patients with bulimia nervosa,” European Journal of Endocrinology, vol. 146, no. 6, pp. R1–R3, 2002. View at Google Scholar · View at Scopus
  109. M. Tanaka, T. Naruo, N. Nagai et al., “Habitual binge/purge behavior influences circulating ghrelin levels in eating disorders,” Journal of Psychiatric Research, vol. 37, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. P. Monteleone, V. Martiadis, A. E. Rigamonti et al., “Investigation of peptide YY and ghrelin responses to a test meal in bulimia nervosa,” Biological Psychiatry, vol. 57, no. 8, pp. 926–931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Kojima, T. Nakahara, N. Nagai et al., “Altered ghrelin and peptide YY responses to meals in bulimia nervosa,” Clinical Endocrinology, vol. 62, no. 1, pp. 74–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Monteleone, V. Martiadis, M. Fabrazzo, C. Serritella, and M. Maj, “Ghrelin and leptin responses to food ingestion in bulimia nervosa: implications for binge-eating and compensatory behaviours,” Psychological Medicine, vol. 33, no. 8, pp. 1387–1394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Fassino, G. Abbate Daga, V. Mondelli et al., “Hormonal and metabolic responses to acute ghrelin administration in patients with bulimia nervosa,” Psychoneuroendocrinology, vol. 30, no. 6, pp. 534–540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. A. J. Agnew, E. Robinson, C. M. McVicar et al., “The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling,” British Journal of Pharmacology, vol. 166, no. 1, pp. 327–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Nogueiras, P. Pfluger, S. Tovar et al., “Effects of obestatin on energy balance and growth hormone secretion in rodents,” Endocrinology, vol. 148, no. 1, pp. 21–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Zamrazilová, V. Hainer, D. Sedláčková et al., “Plasma obestatin levels in normal weight, obese and anorectic women,” Physiological Research, vol. 57, no. 1, pp. S49–S55, 2008. View at Google Scholar · View at Scopus
  117. D. G. Haider, K. Schindler, G. Prager et al., “Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1168–1171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. G. Gourcerol, D. H. St-Pierre, and Y. Taché, “Lack of obestatin effects on food intake: should obestatin be renamed ghrelin-associated peptide (GAP)?” Regulatory Peptides, vol. 141, no. 1–3, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Van Dijck, D. Van Dam, V. Vergote et al., “Central administration of obestatin fails to show inhibitory effects on food and water intake in mice,” Regulatory Peptides, vol. 156, no. 1–3, pp. 77–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. S. S. Qader, R. Håkanson, J. F. Rehfeld, I. Lundquist, and A. Salehi, “Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas,” Regulatory Peptides, vol. 146, no. 1–3, pp. 230–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. W. K. Samson, M. M. White, C. Price, and A. V. Ferguson, “Obestatin acts in brain to inhibit thirst,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 292, no. 1, pp. R637–R643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. J. P. Camiña, J. F. Campos, J. E. Caminos, C. Dieguez, and F. F. Casanueva, “Obestatin-mediated proliferation of human retinal pigment epithelial cells: regulatory mechanisms,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Kapica, M. Zabielska, I. Puzio et al., “Obestatin stimulates the secretion of pancreatic juice enzymes through a vagal pathway in anaesthetized rats—preliminary results,” Journal of Physiology and Pharmacology, vol. 58, no. 3, pp. 123–130, 2007. View at Google Scholar · View at Scopus
  124. A.-J. Ren, Z.-F. Guo, Y.-K. Wang et al., “Inhibitory effect of obestatin on glucose-induced insulin secretion in rats,” Biochemical and Biophysical Research Communications, vol. 369, no. 3, pp. 969–972, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. W. Pan, H. Tu, and A. J. Kastin, “Differential BBB interactions of three ingestive peptides: obestatin, ghrelin, and adiponectin,” Peptides, vol. 27, no. 4, pp. 911–916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. V. Vergote, S. Van Dorpe, K. Peremans, C. Burvenich, and B. De Spiegeleer, “In vitro metabolic stability of obestatin: kinetics and identification of cleavage products,” Peptides, vol. 29, no. 10, pp. 1740–1748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. E. M. Egido, R. Hernández, J. Marco, and R. A. Silvestre, “Effect of obestatin on insulin, glucagon and somatostatin secretion in the perfused rat pancreas,” Regulatory Peptides, vol. 152, no. 1–3, pp. 61–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. E. Lauwers, B. Landuyt, L. Arckens, L. Schoofs, and W. Luyten, “Obestatin does not activate orphan G protein-coupled receptor GPR39,” Biochemical and Biophysical Research Communications, vol. 351, no. 1, pp. 21–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. J. V. Zhang, H. Jahr, C.-W. Luo et al., “Obestatin induction of early-response gene expression in gastrointestinal and adipose tissues and the mediatory role of G protein-coupled receptor, GPR39,” Molecular Endocrinology, vol. 22, no. 6, pp. 1464–1475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. K. L. Egerod, B. Holst, P. S. Petersen et al., “GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue,” Molecular Endocrinology, vol. 21, no. 7, pp. 1685–1698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. V. Catalán, J. Gómez-Ambrosi, F. Rotellar et al., “The obestatin receptor (GPR39) is expressed in human adipose tissue and is down-regulated in obesity-associated type 2 diabetes mellitus,” Clinical Endocrinology, vol. 66, no. 4, pp. 598–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. X.-Y. Dong, J.-M. He, S.-Q. Tang, H.-Y. Li, Q.-Y. Jiang, and X.-T. Zou, “Is GPR39 the natural receptor of obestatin?” Peptides, vol. 30, no. 2, pp. 431–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. R. Granata, F. Settanni, D. Gallo et al., “Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function,” Diabetes, vol. 57, no. 4, pp. 967–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Fujimiya, K. Ataka, A. Asakawa, C.-Y. Chen, I. Kato, and A. Inui, “Regulation of gastroduodenal motility: acyl ghrelin, des-acyl ghrelin and obestatin and hypothalamic peptides,” Digestion, vol. 85, no. 2, pp. 90–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Monteleone, C. Serritella, V. Martiadis, P. Scognamiglio, and M. Maj, “Plasma obestatin, ghrelin, and ghrelin/obestatin ratio are increased in underweight patients with anorexia nervosa but not in symptomatic patients with bulimia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4418–4421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. T. Nakahara, T. Harada, D. Yasuhara et al., “Plasma obestatin concentrations are negatively correlated with body mass index, insulin resistance index, and plasma leptin concentrations in obesity and anorexia nervosa,” Biological Psychiatry, vol. 64, no. 3, pp. 252–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Uehara, D. Yasuhara, T. Nakahara et al., “Increase in energy intake leads to a decrease in obestatin in restricting-type of anorexia nervosa,” Experimental and Clinical Endocrinology and Diabetes, vol. 119, no. 9, pp. 536–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. N. M. Neary, C. J. Small, and S. R. Bloom, “Gut and mind,” Gut, vol. 52, no. 7, pp. 918–921, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Sahu and S. P. Kalra, “Neuropeptidergic regulation of feeding behavior: neuropeptide Y,” Trends in Endocrinology and Metabolism, vol. 4, no. 7, pp. 217–224, 1993. View at Publisher · View at Google Scholar · View at Scopus
  140. K. Wynne, S. Stanley, B. McGowan, and S. R. Bloom, “Appetite control,” Journal of Endocrinology, vol. 184, no. 2, pp. 291–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. L. C. Turtzo and M. D. Lane, “NPY and neuron-adipocyte interactions in the regulation of metabolism,” EXS, no. 95, pp. 133–141, 2006. View at Google Scholar · View at Scopus
  142. L. C. Turtzo, R. Marx, and M. Daniel Lane, “Cross-talk between sympathetic neurons and adipocytes in coculture,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12385–12390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Nogueiras, L. M. Williams, and C. Dieguez, “Ghrelin: new molecular pathways modulating appetite and adiposity,” Obesity Facts, vol. 3, no. 5, pp. 285–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. V. Coiro, R. Volpi, S. Cataldo et al., “Somatostatin reduces neuropeptide Y rise induced by physical exercise,” Hormone and Metabolic Research, vol. 43, no. 5, pp. 361–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. V. Coiro, A. Casti, E. Volta et al., “Effect of physical training on reduction of circulating neuropeptide Y levels in elderly humans,” Journal of Endocrinological Investigation, vol. 33, no. 2, pp. 132–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. I. A. Antonijevic, H. Murck, S. Bohlhalter, R.-M. Frieboes, F. Holsboer, and A. Steiger, “Neuropeptide Y promotes sleep and inhibits ACTH and cortisol release in young men,” Neuropharmacology, vol. 39, no. 8, pp. 1474–1481, 2000. View at Publisher · View at Google Scholar · View at Scopus
  147. H. Watanobe and T. Tamura, “Stimulation by neuropeptide Y of growth hormone secretion in prolactinoma in vivo,” Neuropeptides, vol. 30, no. 5, pp. 429–432, 1996. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Watanobe and T. Tamura, “Stimulatory and inhibitory effects of neuropeptide Y on growth hormone secretion in acromegaly in vivo,” Neuropeptides, vol. 31, no. 1, pp. 29–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Pihlajamäki, P. Karhapää, I. Vauhkonen et al., “The Leu7Pro polymorphism of the neuropeptide Y gene regulates free fatty acid metabolism,” Metabolism, vol. 52, no. 5, pp. 643–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. C. J. Billington, J. E. Briggs, M. Grace, and A. S. Levine, “Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 260, no. 2, pp. R321–R327, 1991. View at Google Scholar · View at Scopus
  151. K. Kos, A. L. Harte, S. James et al., “Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass,” American Journal of Physiology. Endocrinology and Metabolism, vol. 293, no. 5, pp. E1335–E1340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. K. Yang, H. Guan, E. Arany, D. J. Hill, and X. Cao, “Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor,” FASEB Journal, vol. 22, no. 7, pp. 2452–2464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. K. Kos, A. R. Baker, M. Jernas et al., “DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue,” Diabetes, Obesity and Metabolism, vol. 11, no. 4, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. L. E. Kuo, M. Czarnecka, J. B. Kitlinska, J. U. Tilan, R. Kvetňanský, and Z. Zukowska, “Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1148, pp. 232–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. K. Eaton, F. R. Sallee, and R. Sah, “Relevance of neuropeptide Y (NPY) in psychiatry,” Current Topics in Medicinal Chemistry, vol. 7, no. 17, pp. 1645–1659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. T. R. Gruninger, B. LeBoeuf, Y. Liu, and L. R. Garcia, “Molecular signaling involved in regulating feeding and other motivated behaviors,” Molecular Neurobiology, vol. 35, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. T. Hökfelt, D. Stanic, S. D. Sanford et al., “NPY and its involvement in axon guidance, neurogenesis, and feeding,” Nutrition, vol. 24, no. 9, pp. 860–868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. S. L. Hargrave and K. P. Kinzig, “Repeated gastric distension alters food intake and neuroendocrine profiles in rats,” Physiology and Behavior, vol. 105, no. 4, pp. 975–981, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. B. Baranowska, E. Wasilewska-Dziubińska, M. Radzikowska, A. Płonowski, and K. Roguski, “Neuropeptide Y, galanin, and leptin release in obese women and in women with anorexia nervosa,” Metabolism, vol. 46, no. 12, pp. 1384–1389, 1997. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Nedvídková, H. Papezová, M. Haluzík, and V. Schreiber, “Interaction between serum leptin levels and hypothalamo-hypophyseal-thyroid axis in patients with anorexia nervosa,” Endocrine Research, vol. 26, no. 2, pp. 219–230, 2000. View at Google Scholar · View at Scopus
  161. B. Baranowska, E. Wolinska-Witort, E. Wasilewska-Dziubinska, K. Roguski, and M. Chmielowska, “Plasma leptin, neuropeptide Y (NPY) and galanin concentrations in bulimia nervosa and in anorexia nervosa,” Neuroendocrinology Letters, vol. 22, no. 5, pp. 356–358, 2001. View at Google Scholar · View at Scopus
  162. J. Oświecimska, K. Ziora, G. Geisler, and K. Broll-Waśka, “Prospective evaluation of leptin and neuropeptide Y (NPY) serum levels in girls with anorexia nervosa,” Neuroendocrinology Letters, vol. 26, no. 4, pp. 301–304, 2005. View at Google Scholar · View at Scopus
  163. F. Sederholm, A. A. Ammar, and P. Södersten, “Intake inhibition by NPY: role of appetitive ingestive behavior and aversion,” Physiology and Behavior, vol. 75, no. 4, pp. 567–575, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. A. A. Ammar, R. Nergårdh, B. B. Fredholm, U. Brodin, and P. Södersten, “Intake inhibition by NPY and CCK-8: a challenge of the notion of NPY as an “Orexigen”,” Behavioural Brain Research, vol. 161, no. 1, pp. 82–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. R. Nergårdh, A. Ammar, U. Brodin, J. Bergström, A. Scheurink, and P. Södersten, “Neuropeptide Y facilitates activity-based-anorexia,” Psychoneuroendocrinology, vol. 32, no. 5, pp. 493–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. U. Pedersen-Bjergaard, U. Høst, H. Kelbæk et al., “Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 56, no. 6, pp. 497–503, 1996. View at Google Scholar · View at Scopus
  167. N. Nonaka, S. Shioda, M. L. Niehoff, and W. A. Banks, “Characterization of blood-brain barrier permeability to PYY3-36 in the mouse,” Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 3, pp. 948–953, 2003. View at Publisher · View at Google Scholar · View at Scopus
  168. R. L. Batterham, M. A. Cowley, C. J. Small et al., “Gut hormone PYY3-36 physiologically inhibits food intake,” Nature, vol. 418, no. 6898, pp. 650–654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  169. L. Brunetti, G. Orlando, C. Ferrante, A. Chiavaroli, and M. Vacca, “Peptide YY (3–36) inhibits dopamine and norepinephrine release in the hypothalamus,” European Journal of Pharmacology, vol. 519, no. 1-2, pp. 48–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. E. S. Corp, J. McQuade, S. Krasnicki, and D. B. Conze, “Feeding after fourth ventricular administration of neuropeptide Y receptor agonists in rats,” Peptides, vol. 22, no. 3, pp. 493–499, 2001. View at Publisher · View at Google Scholar · View at Scopus
  171. M. R. Druce, C. J. Small, and S. R. Bloom, “Minireview: gut peptides regulating satiety,” Endocrinology, vol. 145, no. 6, pp. 2660–2665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. L. Degen, S. Oesch, M. Casanova et al., “Effect of peptide YY3-36 on food intake in humans,” Gastroenterology, vol. 129, no. 5, pp. 1430–1436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. R. K. Harding and T. J. McDonald, “Identification and characterization of the emetic effects of peptide YY,” Peptides, vol. 10, no. 1, pp. 21–24, 1989. View at Google Scholar · View at Scopus
  174. R. L. Batterham, M. A. Cohen, S. M. Ellis et al., “Inhibition of food intake in obese subjects by peptide YY3-36,” New England Journal of Medicine, vol. 349, no. 10, pp. 941–948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  175. J. Tong and D. D'Alessio, “Eating disorders and gastrointestinal peptides,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 18, pp. 42–49, 2011. View at Google Scholar
  176. S.-Y. Ueda, T. Yoshikawa, Y. Katsura, T. Usui, and S. Fujimoto, “Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise,” Journal of Endocrinology, vol. 203, no. 3, pp. 357–364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. A. D. Nguyen, H. Herzog, and A. Sainsbury, “Neuropeptide Y and peptide YY: important regulators of energy metabolism,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 18, no. 1, pp. 56–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Labelle, Y. Boulanger, A. Fournier, S. St.-Pierre, and R. Savard, “Tissue-specific regulation of fat cell lipolysis by NPY in 6-OHDA-treated rats,” Peptides, vol. 18, no. 6, pp. 801–808, 1997. View at Publisher · View at Google Scholar · View at Scopus
  179. P. Monteleone, E. Castaldo, and M. Maj, “Neuroendocrine dysregulation of food intake in eating disorders,” Regulatory Peptides, vol. 149, no. 1–3, pp. 39–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. S. Stock, P. Leichner, A. C. K. Wong et al., “Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 4, pp. 2161–2168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. M. Misra, K. K. Miller, P. Tsai et al., “Elevated peptide YY levels in adolescent girls with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 1027–1033, 2006. View at Publisher · View at Google Scholar · View at Scopus
  182. T. Nakahara, S. Kojima, M. Tanaka et al., “Incomplete restoration of the secretion of ghrelin and PYY compared to insulin after food ingestion following weight gain in anorexia nervosa,” Journal of Psychiatric Research, vol. 41, no. 10, pp. 814–820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. E. A. Lawson, K. T. Eddy, D. Donoho et al., “Appetite-regulating hormones cortisol and peptide YY are associated with disordered eating psychopathology, independent of body mass index,” European Journal of Endocrinology, vol. 164, no. 2, pp. 253–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  184. N. Germain, B. Galusca, C. W. Le Roux et al., “Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon-like peptide 1, ghrelin, and leptin,” American Journal of Clinical Nutrition, vol. 85, no. 4, pp. 967–971, 2007. View at Google Scholar · View at Scopus
  185. W. H. Kaye, W. Berrettini, H. Gwirtsman, and D. T. George, “Altered cerebrospinal fluid neuropeptide Y and peptide YY immunoreactivity in anorexia and bulimia nervosa,” Archives of General Psychiatry, vol. 47, no. 6, pp. 548–556, 1990. View at Google Scholar · View at Scopus
  186. K. A. Gendall, W. H. Kaye, M. Altemus, C. W. McConaha, and M. C. La Via, “Leptin, neuropeptide Y, and peptide YY in long-term recovered eating disorder patients,” Biological Psychiatry, vol. 46, no. 2, pp. 292–299, 1999. View at Publisher · View at Google Scholar · View at Scopus
  187. M. J. Devlin, H. R. Kissileff, E. J. Zimmerli et al., “Gastric emptying and symptoms of bulimia nervosa: effect of a prokinetic agent,” Physiology and Behavior, vol. 106, no. 2, pp. 238–242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  188. T. D. Geracioti Jr. and R. A. Liddle, “Impaired cholecystokinin secretion in bulimia nervosa,” New England Journal of Medicine, vol. 319, no. 11, pp. 683–688, 1988. View at Google Scholar · View at Scopus
  189. H. C. Lin, W. Y. Chey, and X.-T. Zhao, “Release of distal gut peptide YY (PYY) by fat in proximal gut depends on CCK,” Peptides, vol. 21, no. 10, pp. 1561–1563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  190. G. J. Dockray, “Cholecystokinin and gut-brain signalling,” Regulatory Peptides, vol. 155, no. 1–3, pp. 6–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. R. Chandra and R. A. Liddle, “Cholecystokinin,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 1, pp. 63–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. J. Gibbs, R. C. Young, and G. P. Smith, “Cholecystokinin decreases food intake in rats,” Journal of Comparative and Physiological Psychology, vol. 84, no. 3, pp. 488–495, 1973. View at Google Scholar · View at Scopus
  193. L. Degen, D. Matzinger, J. Drewe, and C. Beglinger, “The effect of cholecystokinin in controlling appetite and food intake in humans,” Peptides, vol. 22, no. 8, pp. 1265–1269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  194. S. C. Woods, “Gastrointestinal Satiety Signals. I. An overview of gastrointestinal signals that influence food intake,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 286, no. 1, pp. G7–G13, 2004. View at Google Scholar · View at Scopus
  195. K. Hisadome, F. Reimann, F. M. Gribble, and S. Trapp, “CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamatergic synaptic inputs,” Diabetes, vol. 60, no. 11, pp. 2701–2709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. C. T. Dourish, W. Rycroft, and S. D. Iversen, “Postponement of satiety by blockade of brain cholecystokinin (CCK-B) receptors,” Science, vol. 245, no. 4925, pp. 1509–1511, 1989. View at Google Scholar · View at Scopus
  197. H. Chen, S. Kent, and M. J. Morris, “Is the CCK2 receptor essential for normal regulation of body weight and adiposity?” European Journal of Neuroscience, vol. 24, no. 5, pp. 1427–1433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. P. Clerc, M. G. C. Constans, H. Lulka et al., “Involvement of cholecystokinin 2 receptor in food intake regulation: hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice,” Endocrinology, vol. 148, no. 3, pp. 1039–1049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. E. Philipp, K.-M. Pirke, M. B. Kellner, and J.-C. Krieg, “Disturbed cholecystokinin secretion in patients with eating disorders,” Life Sciences, vol. 48, no. 25, pp. 2443–2450, 1991. View at Publisher · View at Google Scholar · View at Scopus
  200. H. Tamai, J. Takemura, N. Kobayashi, S. Matsubayashi, S. Matsukura, and T. Nakagawa, “Changes in plasma cholecystokinin concentrations after oral glucose tolerance test in anorexia nervosa before and after therapy,” Metabolism, vol. 42, no. 5, pp. 581–584, 1993. View at Publisher · View at Google Scholar · View at Scopus
  201. R. F. Harty, P. H. Pearson, T. E. Solomon, and J. E. McGuigan, “Cholecystokinin, vasoactive intestinal peptide and peptide histidine methionine responses to feeding in anorexia nervosa,” Regulatory Peptides, vol. 36, no. 1, pp. 141–150, 1991. View at Publisher · View at Google Scholar · View at Scopus
  202. F. Brambilla, M. Brunetta, A. Peirone et al., “T-lymphocyte cholecystokinin-8 and beta-endorphin concentrations in eating disorders: I. Anorexia nervosa,” Psychiatry Research, vol. 59, no. 1-2, pp. 43–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  203. B. Baranowska, M. Radzikowska, E. Wasilewska-Dziubinska, K. Roguski, and M. Borowiec, “Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity,” Diabetes, Obesity and Metabolism, vol. 2, no. 2, pp. 99–103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  204. U. Cuntz, P. Enck, E. Frühauf et al., “Cholecystokinin revisited: CCK and the hunger trap in anorexia nervosa,” PLoS ONE, vol. 8, Article ID e54457, 2013. View at Google Scholar
  205. R. B. Lydiard, T. D. Brewerton, M. D. Fossey et al., “CSF cholecystokinin octapeptide in patients with bulimia nervosa and in normal comparison subjects,” American Journal of Psychiatry, vol. 150, no. 7, pp. 1099–1101, 1993. View at Google Scholar · View at Scopus
  206. M. J. Devlin, B. T. Walsh, J. L. Guss, H. R. Kissileff, R. A. Liddle, and E. Petkova, “Postprandial cholecystokinin release and gastric emptying in patients with bulimia nervosa,” American Journal of Clinical Nutrition, vol. 65, no. 1, pp. 114–120, 1997. View at Google Scholar · View at Scopus
  207. U. F. Bailer and W. H. Kaye, “A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa,” Current Drug Targets. CNS and Neurological Disorders, vol. 2, no. 1, pp. 53–59, 2003. View at Google Scholar · View at Scopus
  208. S. Hannon-Engel, “Regulating satiety in bulimia nervosa: the role of cholecystokinin,” Perspectives in Psychiatric Care, vol. 48, no. 1, pp. 34–40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  209. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, pp. 425–432, 1994. View at Google Scholar
  210. A. Bado, S. Levasseur, S. Attoub et al., “The stomach is a source of leptin,” Nature, vol. 394, no. 6695, pp. 790–793, 1998. View at Publisher · View at Google Scholar · View at Scopus
  211. L. Jin, B. G. Burguera, M. E. Couce et al., “Leptin and leptin receptor expression in normal and neoplastic human pituitary: evidence of a regulatory role for leptin on pituitary cell proliferation,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 8, pp. 2903–2911, 1999. View at Google Scholar · View at Scopus
  212. K. N. Frayn, F. Karpe, B. A. Fielding, I. A. Macdonald, and S. W. Coppack, “Integrative physiology of human adipose tissue,” International Journal of Obesity, vol. 27, no. 8, pp. 875–888, 2003. View at Publisher · View at Google Scholar · View at Scopus
  213. V. Anubhuti and S. Arora, “Leptin and its metabolic interactions—an update,” Diabetes, Obesity and Metabolism, vol. 10, no. 11, pp. 973–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  214. A. Lammert, W. Kiess, A. Bottner, A. Glasow, and J. Kratzsch, “Soluble leptin receptor represents the main leptin binding activity in human blood,” Biochemical and Biophysical Research Communications, vol. 283, no. 4, pp. 982–988, 2001. View at Publisher · View at Google Scholar · View at Scopus
  215. K. Stein, E. Vasquez-Garibay, J. Kratzsch, E. Romero-Velarde, and G. Jahreis, “Influence of nutritional recovery on the leptin axis in severely malnourished children,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 1021–1026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. J. L. Halaas, K. S. Gajiwala, M. Maffei et al., “Weight-reducing effects of the plasma protein encoded by the obese gene,” Science, vol. 269, no. 5223, pp. 543–546, 1995. View at Google Scholar · View at Scopus
  217. W. G. Haynes, D. A. Morgan, S. A. Walsh, A. L. Mark, and W. I. Sivitz, “Receptor-mediated regional sympathetic nerve activation by leptin,” Journal of Clinical Investigation, vol. 100, no. 2, pp. 270–278, 1997. View at Google Scholar · View at Scopus
  218. M. Tang-Christensen, P. J. Havel, R. R. Jacobs, P. J. Larsen, and J. L. Cameron, “Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 2, pp. 711–717, 1999. View at Publisher · View at Google Scholar · View at Scopus
  219. C. A. Lissett, P. E. Clayton, and S. M. Shalet, “The acute leptin response to GH,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4412–4415, 2001. View at Publisher · View at Google Scholar · View at Scopus
  220. S. P. Kalra, N. Ueno, and P. S. Kalra, “Stimulation of appetite by ghrelin is regulated by leptin restraint: peripheral and central sites of action,” Journal of Nutrition, vol. 135, no. 5, pp. 1331–1335, 2005. View at Google Scholar · View at Scopus
  221. E. Carro, L. M. Seoane, R. Señaris, R. V. Considine, F. F. Casanueva, and C. Dieguez, “Interaction between leptin and neuropeptide Y on in vivo growth hormone secretion,” Neuroendocrinology, vol. 68, no. 3, pp. 187–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  222. C. Dieguez, E. Carro, L. M. Seoane et al., “Regulation of somatotroph cell function by the adipose tissue,” International Journal of Obesity, vol. 24, no. 2, pp. S100–S103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  223. M. Misra, K. K. Miller, K. Kuo et al., “Secretory dynamics of leptin in adolescent girls with anorexia nervosa and healthy adolescents,” American Journal of Physiology. Endocrinology and Metabolism, vol. 289, no. 3, pp. E373–E381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  224. Z. Zhao, I. Sakata, Y. Okubo, K. Koike, K. Kangawa, and T. Sakai, “Gastric leptin, but not estrogen and somatostatin, contributes to the elevation of ghrelin mRNA expression level in fasted rats,” Journal of Endocrinology, vol. 196, no. 3, pp. 529–538, 2008. View at Publisher · View at Google Scholar · View at Scopus
  225. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, and S. Oikawa, “Effects of insulin, leptin, and glucagon on ghrelin secretion from isolated perfused rat stomach,” Regulatory Peptides, vol. 119, no. 1-2, pp. 77–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  226. M. Tschöp, C. Weyer, P. A. Tataranni, V. Devanarayan, E. Ravussin, and M. L. Heiman, “Circulating ghrelin levels are decreased in human obesity,” Diabetes, vol. 50, no. 4, pp. 707–709, 2001. View at Google Scholar · View at Scopus
  227. G. Frühbeck, M. Aguado, and J. A. Martinez, “In vitro lipolytic effect of leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of leptin,” Biochemical and Biophysical Research Communications, vol. 240, no. 3, pp. 590–594, 1997. View at Publisher · View at Google Scholar · View at Scopus
  228. G. Frühbeck, S. A. Jebb, and A. M. Prentice, “Leptin: physiology and pathophysiology,” Clinical Physiology, vol. 18, no. 5, pp. 399–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  229. Y. Bai, S. Zhang, K.-S. Kim, J.-K. Lee, and K.-H. Kim, “Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones,” Journal of Biological Chemistry, vol. 271, no. 24, pp. 13939–13942, 1996. View at Publisher · View at Google Scholar · View at Scopus
  230. R. S. Ahima, D. Prabakaran, C. Mantzoros et al., “Role of leptin in the neuroendocrine response to fasting,” Nature, vol. 382, no. 6588, pp. 250–252, 1996. View at Publisher · View at Google Scholar · View at Scopus
  231. K. Holtkamp, B. Herpertz-Dahlmann, C. Mika et al., “Elevated physical activity and low leptin levels co-occur in patients with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5169–5174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  232. I. Dostalova, V. Kopsky, J. Duskova, H. Papezová, K. Pacak, and J. Nedvidkova, “Leptin concentrations in the abdominal subcutaneous adipose tissue of patients with anorexia nervosa assessed by in vivo microdialysis,” Regulatory Peptides, vol. 128, pp. 63–68, 2005. View at Google Scholar
  233. F. D. Zepf, I. Sungurtekin, F. Glass et al., “Differences in zinc status and the leptin axis in anorexic and recovered adolescents and young adults: a pilot study,” Food and Nutrition Research, vol. 56, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  234. J. Housova, K. Anderlova, J. Krizová et al., “Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1366–1370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  235. P. Monteleone, F. Bortolotti, M. Fabrazzo, A. La Rocca, A. Fuschino, and M. Maj, “Plasma leptin response to acute fasting and refeeding in untreated women with bulimia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 7, pp. 2499–2503, 2000. View at Publisher · View at Google Scholar · View at Scopus
  236. T. D. Brewerton, M. D. Lesem, A. Kennedy, and W. T. Garvey, “Reduced plasma leptin concentrations in bulimia nervosa,” Psychoneuroendocrinology, vol. 25, no. 7, pp. 649–658, 2000. View at Publisher · View at Google Scholar · View at Scopus
  237. S. Zipfel, T. Specht, W. F. Blum et al., “Leptin-a parameter for body fat measurement in patients with eating disorders,” European Eating Disorders Review, vol. 6, pp. 38–47, 1998. View at Google Scholar
  238. D. C. Jimerson, C. Mantzoros, B. E. Wolfe, and E. D. Metzger, “Decreased serum leptin in bulimia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4511–4514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  239. P. Monteleone, V. Martiadis, B. Colurcio, and M. Maj, “Leptin secretion is related to chronicity and severity of the illness in bulimia nervosa,” Psychosomatic Medicine, vol. 64, no. 6, pp. 874–879, 2002. View at Publisher · View at Google Scholar · View at Scopus
  240. E. T. Vestergaard, T. K. Hansen, S. Nielsen, N. Moller, J. S. Christiansen, and J. O. L. Jorgensen, “Effects of GH replacement therapy in adults on serum levels of leptin and ghrelin: the role of lipolysis,” European Journal of Endocrinology, vol. 153, no. 4, pp. 545–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  241. A. Inui, “Eating behavior in anorexia nervosa—an excess of both orexigenic and anorexigenic signalling?” Molecular Psychiatry, vol. 6, no. 6, pp. 620–624, 2001. View at Publisher · View at Google Scholar · View at Scopus
  242. K. K. Miller, “Endocrine dysregulation in anorexia nervosa update,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 10, pp. 2939–2949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  243. M. J. Acres, J. J. Heath, and J. A. Morris, “Anorexia nervosa, autoimmunity and the hygiene hypothesis,” Medical Hypotheses, vol. 78, no. 6, pp. 772–775, 2012. View at Publisher · View at Google Scholar · View at Scopus
  244. M. Takii, Y. Uchigata, J. Kishimoto et al., “The relationship between the age of onset of type 1 diabetes and the subsequent development of a severe eating disorder by female patients,” Pediatric Diabetes, vol. 12, no. 4, pp. 396–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  245. L. Prasad-Reddy, “Disordered eating in type 1 diabetes: insulin omission and diabulimia,” U.S. Pharmacist, vol. 37, pp. 1–8, 2012. View at Google Scholar
  246. B. M. Geiger, G. G. Behr, L. E. Frank et al., “Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats,” FASEB Journal, vol. 22, no. 8, pp. 2740–2746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  247. F. Van den Eynde and J. Treasure, “Neuroimaging in eating disorders and obesity: implications for research,” Child and Adolescent Psychiatric Clinics of North America, vol. 18, no. 1, pp. 95–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  248. R. L. Batterham, D. H. Ffytche, J. M. Rosenthal et al., “PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans,” Nature, vol. 450, no. 7166, pp. 106–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  249. S. Malik, F. McGlone, D. Bedrossian, and A. Dagher, “Ghrelin modulates brain activity in areas that control appetitive behavior,” Cell Metabolism, vol. 7, no. 5, pp. 400–409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  250. P. Monteleone, C. Serritella, V. Martiadis, and M. Maj, “Deranged secretion of ghrelin and obestatin in the cephalic phase of vagal stimulation in women with anorexia nervosa,” Biological Psychiatry, vol. 64, no. 11, pp. 1005–1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  251. W. H. Kaye, J. L. Fudge, and M. Paulus, “New insights into symptoms and neurocircuit function of anorexia nervosa,” Nature Reviews Neuroscience, vol. 10, no. 8, pp. 573–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  252. A.-K. Fladung, G. Grön, K. Grammer et al., “A neural signature of anorexia nervosa in the ventral striatal reward system,” American Journal of Psychiatry, vol. 167, no. 2, pp. 206–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  253. P. Monteleone, “New frontiers in endocrinology of eating disorders,” Current Topics in Behavioral Neurosciences, vol. 6, pp. 189–208, 2011. View at Google Scholar
  254. P. Monteleone and M. Maj, “Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: beyond the homeostatic control of food intake,” Psychoneuroendocrinology, vol. 38, pp. 312–330, 2013. View at Google Scholar
  255. L. M. Holsen, E. A. Lawson, J. Blum et al., “Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa,” Journal of Psychiatry & Neuroscience, vol. 37, pp. 322–332, 2012. View at Google Scholar
  256. A. Capasso, C. Petrella, and W. Milano, “Recent clinical aspects of eating disorders,” Reviews on Recent Clinical Trials, vol. 4, no. 1, pp. 63–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  257. J. Hebebrand and Ö. Albayrak, “Leptin treatment of patients with anorexia nervosa? The urgent need for initiation of clinical studies,” European Child and Adolescent Psychiatry, vol. 21, no. 2, pp. 63–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  258. R. Bou Khalil, O. de Muylder, and F. L. Hebborn, “Treatment of anorexia nervosa with TNF-α down-regulating agents,” Eating and Weight Disorders, vol. 16, Article ID e300, 2011. View at Google Scholar
  259. H. Bissada, G. A. Tasca, A. M. Barber, and J. Bradwejn, “Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial,” American Journal of Psychiatry, vol. 165, no. 10, pp. 1281–1288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  260. W. A. Banks, “Blood-brain barrier as a regulatory interface,” Forum of Nutrition, vol. 63, pp. 102–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  261. K. G. Hofbauer, A.-C. Lecourt, and J.-C. Peter, “Antibodies as pharmacologic tools for studies on the regulation of energy balance,” Nutrition, vol. 24, no. 9, pp. 791–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  262. L. A. W. Verhagen, E. Egecioglu, M. C. M. Luijendijk, J. J. G. Hillebrand, R. A. H. Adan, and S. L. Dickson, “Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity,” European Neuropsychopharmacology, vol. 21, no. 5, pp. 384–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  263. S. Cardona Cano, M. Merkestein, K. P. Skibicka, S. L. Dickson, and R. A. H. Adan, “Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy,” CNS Drugs, vol. 26, no. 4, pp. 281–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  264. B. Herpertz-Dahlmann, K. Holtkamp, and K. Konrad, “Eating disorders: anorexia and bulimia nervosa,” Handbook of Clinical Neurology, vol. 106, pp. 447–462, 2012. View at Publisher · View at Google Scholar
  265. P. J. Hay and A. M. Claudino, “Clinical psychopharmacology of eating disorders: a research update,” International Journal of Neuropsychopharmacology, vol. 15, no. 2, pp. 209–222, 2012. View at Publisher · View at Google Scholar · View at Scopus
  266. T. Kishi, V. Kafantaris, S. Sunday, E. M. Sheridan, and C. U. Correll, “Are antipsychotics effective for the treatment of anorexia nervosa? Results from a systematic review and meta-analysis,” Journal of Clinical Psychiatry, vol. 73, pp. e757–e766, 2012. View at Google Scholar
  267. F. D. Garcia, Q. Coquerel, J.-C. do Rego et al., “Anti-neuropeptide Y plasma immunoglobulins in relation to mood and appetite in depressive disorder,” Psychoneuroendocrinology, vol. 73, no. 9, pp. 1457–1467, 2012. View at Publisher · View at Google Scholar · View at Scopus
  268. S. O. Fetissov and P. Déchelotte, “The new link between gut-brain axis and neuropsychiatric disorders,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 5, pp. 477–482, 2011. View at Publisher · View at Google Scholar · View at Scopus