Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 518046, 10 pages
http://dx.doi.org/10.1155/2013/518046
Review Article

Role of GnRH Neurons and Their Neuronal Afferents as Key Integrators between Food Intake Regulatory Signals and the Control of Reproduction

Juan Roa1,2,3

1Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
2CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
3Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain

Received 28 June 2013; Accepted 7 August 2013

Academic Editor: Carlos Dieguez

Copyright © 2013 Juan Roa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. N. Wade and J. E. Jones, “Neuroendocrinology of nutritional infertility,” American Journal of Physiology, vol. 287, no. 6, pp. R1277–R1296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Nyboe Andersen and K. Erb, “Register data on assisted reproductive technology (ART) in Europe including a detailed description of ART in Denmark,” International Journal of Andrology, vol. 29, no. 1, pp. 12–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. E. Skakkebæk, N. Jørgensen, K. M. Main et al., “Is human fecundity declining?” International Journal of Andrology, vol. 29, no. 1, pp. 2–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Griffiths, S. M. Dyer, S. J. Lord, C. Pardy, I. S. Fraser, and S. Eckermann, “A cost-effectiveness analysis of in vitro fertilization by maternal age and number of treatment attempts,” Human Reproduction, vol. 25, no. 4, pp. 924–931, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Quennell, A. C. Mulligan, A. Tups et al., “Leptin indirectly regulates gonadotropin-releasing hormone neuronal function,” Endocrinology, vol. 150, no. 6, pp. 2805–2812, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Bruning, D. Gautam, D. J. Burks et al., “Role of brain insulin receptor in control of body weight and reproduction,” Science, vol. 289, no. 5487, pp. 2122–2125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Divall, T. R. Williams, S. E. Carver et al., “Divergent roles of growth factors in the GnRH regulation of puberty in mice,” The Journal of Clinical Investigation, vol. 120, no. 8, pp. 2900–2909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Fernández-Fernández, M. Tena-Sempere, V. M. Navarro et al., “Effects of ghrelin upon gonadotropin-releasing hormone and gonadotropin secretion in adult female rats: in vivo and in vitro studies,” Neuroendocrinology, vol. 82, no. 5-6, pp. 245–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. C. Martini, R. Fernández-Fernández, S. Tovar et al., “Comparative analysis of the effects of ghrelin and unacylated ghrelin on luteinizing hormone secretion in male rats,” Endocrinology, vol. 147, no. 5, pp. 2374–2382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Tena-Sempere, M. L. Barreiro, L. C. González et al., “Novel expression and functional role of ghrelin in rat testis,” Endocrinology, vol. 143, no. 2, pp. 717–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Lebrethon, A. Aganina, M. Fournier, A. Gérard, A. S. Parent, and J. P. Bourguignon, “Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty,” Journal of Neuroendocrinology, vol. 19, no. 3, pp. 181–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Lee, M. E. Miele, D. J. Hicks et al., “KiSS-1, a novel human malignant melanoma metastasis-suppressor gene,” Journal of the National Cancer Institute, vol. 88, no. 23, pp. 1731–1737, 1996. View at Google Scholar · View at Scopus
  13. T. Kitahashi, S. Ogawa, and I. S. Parhar, “Cloning and expression of kiss2 in the zebrafish and medaka,” Endocrinology, vol. 150, no. 2, pp. 821–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. B. Seminara, S. Messager, E. E. Chatzidaki et al., “The GPR54 gene as a regulator of puberty,” The New England Journal of Medicine, vol. 349, no. 17, pp. 1614–1627, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. de Roux, E. Genin, J.-C. Carel, F. Matsuda, J.-L. Chaussain, and E. Milgrom, “Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 10972–10976, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Clarkson, W. C. Boon, E. R. Simpson, and A. E. Herbison, “Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset,” Endocrinology, vol. 150, no. 7, pp. 3214–3220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Roa, E. Aguilar, C. Dieguez, L. Pinilla, and M. Tena-Sempere, “New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function,” Frontiers in Neuroendocrinology, vol. 29, no. 1, pp. 48–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Kinoshita, H. Tsukamura, S. Adachi et al., “Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats,” Endocrinology, vol. 146, no. 10, pp. 4431–4436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Yeo and A. E. Herbison, “Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain,” Endocrinology, vol. 152, no. 6, pp. 2387–2399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. T. Smith, M. J. Cunningham, E. F. Rissman, D. K. Clifton, and R. A. Steiner, “Regulation of kiss1 gene expression in the brain of the female mouse,” Endocrinology, vol. 146, no. 9, pp. 3686–3692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. de Croft, R. Piet, C. Mayer, O. Mai, U. Boehm, and A. E. Herbison, “Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback,” Endocrinology, vol. 153, no. 11, pp. 5384–5393, 2012. View at Publisher · View at Google Scholar
  22. J. M. Castellano, J. Roa, R. M. Luque et al., “KiSS-1/kisspeptins and the metabolic control of reproduction: physiologic roles and putative physiopathological implications,” Peptides, vol. 30, no. 1, pp. 139–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Matsuzaki, T. Iwasa, R. Kinouchi et al., “Fasting reduces the kiss1 mRNA levels in the caudal hypothalamus of gonadally intact adult female rats,” Endocrine Journal, vol. 58, no. 11, pp. 1003–1012, 2011. View at Google Scholar · View at Scopus
  24. T. Kalamatianos, S. E. Grimshaw, R. Poorun, J. D. Hahn, and C. W. Coen, “Fasting reduces KiSS-1 expression in the anteroventral periventricular nucleus (AVPV): effects of fasting on the expression of kiSS-1 and neuropeptide Y in the AVPV or arcuate nucleus of female rats,” Journal of Neuroendocrinology, vol. 20, no. 9, pp. 1089–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. M. Luque, R. D. Kineman, and M. Tena-Sempere, “Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line,” Endocrinology, vol. 148, no. 10, pp. 4601–4611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Castellano, V. M. Navarro, R. Fernández-Fernández et al., “Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition,” Endocrinology, vol. 146, no. 9, pp. 3917–3925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Yamada, Y. Uenoyama, M. Kinoshita et al., “Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats,” Endocrinology, vol. 148, no. 5, pp. 2226–2232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. T. Smith, B. V. Acohido, D. K. Clifton, and R. A. Steiner, “KiSS-1 neurones are direct targets for leptin in the ob/ob mouse,” Journal of Neuroendocrinology, vol. 18, no. 4, pp. 298–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Castellano, V. M. Navarro, R. Fernández-Fernández et al., “Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats,” Diabetes, vol. 55, no. 9, pp. 2602–2610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Donato Jr., R. M. Cravo, R. Frazão et al., “Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in kiss1 neurons,” The Journal of Clinical Investigation, vol. 121, no. 1, pp. 355–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. M. Cravo, R. Frazao, M. Perello et al., “Leptin signaling in kiss1 neurons arises after pubertal development,” PLoS ONE, vol. 8, no. 3, Article ID e58698, 2013. View at Publisher · View at Google Scholar
  32. J. Roa, V. M. Navarro, and M. Tena-Sempere, “Kisspeptins in reproductive biology: consensus knowledge and recent developments,” Biology of Reproduction, vol. 85, no. 4, pp. 650–660, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Donato Jr., C. Lee, D. V. Ratra, C. R. Franci, N. S. Canteras, and C. F. Elias, “. Lesions of the ventral premammillary nucleus disrupt the dynamic changes in kiss1 and GnRH expression characteristic of the proestrus-estrus transition,” Neuroscience, vol. 241, pp. 67–79, 2013. View at Publisher · View at Google Scholar
  34. X. Qiu, A. R. Dowling, J. S. Marino et al., “Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from kiss1 cells,” Endocrinology, vol. 154, no. 3, pp. 1337–1348, 2013. View at Publisher · View at Google Scholar
  35. J. Roa, D. García-Galiano, J. M. Castellano, F. Gaytan, L. Pinilla, and M. Tena-Sempere, “Metabolic control of puberty onset: new players, new mechanisms,” Molecular and Cellular Endocrinology, vol. 324, no. 1-2, pp. 87–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Forbes, X. F. Li, J. Kinsey-Jones, and K. O'Byrne, “Effects of ghrelin on Kisspeptin mRNA expression in the hypothalamic medial preoptic area and pulsatile luteinising hormone secretion in the female rat,” Neuroscience Letters, vol. 460, no. 2, pp. 143–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Huo, H. J. Grill, and C. Bjørbæk, “Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus,” Diabetes, vol. 55, no. 3, pp. 567–573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Zhan, J. Zhou, Q. Feng et al., “Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively,” The Journal of Neuroscience, vol. 33, no. 8, pp. 3624–3632, 2013. View at Publisher · View at Google Scholar
  39. L. Yaswen, N. Diehl, M. B. Brennan, and U. Hochgeschwender, “Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin,” Nature Medicine, vol. 5, no. 9, pp. 1066–1070, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Meister, B. Gömüç, E. Suarez, Y. Ishii, K. Dürr, and L. Gillberg, “Hypothalamic proopiomelanocortin (POMC) neurons have a cholinergic phenotype,” European Journal of Neuroscience, vol. 24, no. 10, pp. 2731–2740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. T. Hentges, V. Otero-Corchon, R. L. Pennock, C. M. King, and M. J. Low, “Proopiomelanocortin expression in both GABA and glutamate neurons,” Journal of Neuroscience, vol. 29, no. 43, pp. 13684–13690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Maolood and B. Meister, “Dynorphin in pro-opiomelanocortin neurons of the hypothalamic arcuate nucleus,” Neuroscience, vol. 154, no. 3, pp. 1121–1131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Hahm, C. Fekete, T. M. Mizuno et al., “VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin- and neuropeptide Y-containing arcuate neurons in response to fasting,” Journal of Neuroscience, vol. 22, no. 16, pp. 6929–6938, 2002. View at Google Scholar · View at Scopus
  44. J. E. Thornton, C. C. Cheung, D. K. Clifton, and R. A. Steiner, “Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice,” Endocrinology, vol. 138, no. 11, pp. 5063–5066, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Balthasar, R. Coppari, J. McMinn et al., “Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis,” Neuron, vol. 42, no. 6, pp. 983–991, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. K. Chun and Y. H. Jo, “Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition,” Journal of Neurophysiology, vol. 104, no. 5, pp. 2321–2328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. C. Könner, R. Janoschek, L. Plum et al., “Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production,” Cell Metabolism, vol. 5, no. 6, pp. 438–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. W. Hill, C. F. Elias, M. Fukuda et al., “Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility,” Cell Metabolism, vol. 11, no. 4, pp. 286–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. D. R. Ward, F. M. Dear, I. A. Ward et al., “Innervation of gonadotropin-releasing hormone neurons by peptidergic neurons conveying circadian or energy balance information in the mouse,” PLoS ONE, vol. 4, no. 4, Article ID e5322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Leranth, N. J. MacLusky, M. Shanabrough, and F. Naftolin, “Immunohistochemical evidence for synaptic connections between pro-opiomelanocortin-immunoreactive axons and LH-RH neurons in the preoptic area of the rat,” Brain Research, vol. 449, no. 1-2, pp. 167–176, 1988. View at Google Scholar · View at Scopus
  51. H. Watanobe, “Leptin directly acts within the hypothalamus to stimulate gonadotropin-releasing hormone secretion in vivo in rats,” The Journal of Physiology, vol. 545, part 1, pp. 255–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. L. Reid, N. Ling, and S. S. C. Yen, “Gonadotropin-releasing activity of α-melanocyte-stimulating hormone in normal subjects and in subjects with hypothalamic-pituitary dysfunction,” Journal of Clinical Endocrinology and Metabolism, vol. 58, no. 5, pp. 773–777, 1984. View at Google Scholar · View at Scopus
  53. P. Durando, A. Ferreira, and M. E. Celis, “Acute administration of alpha-melanotropin exerts a stimulatory control on puberty,” Acta Endocrinologica, vol. 120, no. 5, pp. 661–666, 1989. View at Google Scholar · View at Scopus
  54. K. Backholer, J. Smith, and I. J. Clarke, “Melanocortins may stimulate reproduction by activating orexin neurons in the dorsomedial hypothalamus and kisspeptin neurons in the preoptic area of the ewe,” Endocrinology, vol. 150, no. 12, pp. 5488–5497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Cragnolini, T. Scimonelli, M. E. Celis, and H. B. Schiöth, “The role of melanocortin receptors in sexual behavior in female rats,” Neuropeptides, vol. 34, no. 3-4, pp. 211–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. O. Khorram and S. M. McCann, “Interaction of α-melanocyte-stimulating hormone with β-endorphin to influence anterior pituitary hormone secretion in the female rat,” Endocrinology, vol. 119, no. 3, pp. 1071–1075, 1986. View at Google Scholar · View at Scopus
  57. T. Scimonelli and M. E. Celis, “A central action of α-melanocyte-stimulating hormone on serum levels of LH and prolactin in rats,” Journal of Endocrinology, vol. 124, no. 1, pp. 127–132, 1990. View at Google Scholar · View at Scopus
  58. M. E. Celis, “Release of LH in response to α MSH administration,” Acta Physiologica et Pharmacologica Latinoamericana, vol. 35, no. 3, pp. 281–290, 1985. View at Google Scholar · View at Scopus
  59. S. Matsuyama, S. Ohkura, K. Sakurai, H. Tsukamura, K. I. Maeda, and H. Okamura, “Activation of melanocortin receptors accelerates the gonadotropin-releasing hormone pulse generator activity in goats,” Neuroscience Letters, vol. 383, no. 3, pp. 289–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. A. Butler and R. D. Cone, “The melanocortin receptors: lessons from knockout models,” Neuropeptides, vol. 36, no. 2-3, pp. 77–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Begriche, P. R. Levasseur, J. Zhang et al., “Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane G-protein-coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis,” The Journal of Biological Chemistry, vol. 286, no. 47, pp. 40771–40781, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Sandrock, A. Schulz, C. Merkwitz, T. Schöneberg, K. Spanel-Borowski, and A. Ricken, “Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice,” Reproductive Biology and Endocrinology, vol. 7, article 24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. H. T. van der Ploeg, W. J. Martin, A. D. Howard et al., “A role for the melanocortin 4 receptor in sexual function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11381–11386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. N. H. Granholm, K. W. Jeppesen, and R. A. Japs, “Progressive infertility in female lethal yellow mice (A y/a; strain C57BL/6J),” Journal of Reproduction and Fertility, vol. 76, no. 1, pp. 279–287, 1986. View at Google Scholar · View at Scopus
  65. J. Roa and A. E. Herbison, “Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice,” Endocrinology, vol. 153, no. 11, pp. 5587–5599, 2012. View at Publisher · View at Google Scholar
  66. D. D. Israel, S. Sheffer-Babila, C. de Luca et al., “Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction,” Endocrinology, vol. 153, no. 5, pp. 2408–2419, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. B. L. Kieffer, “Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides,” Cellular and Molecular Neurobiology, vol. 15, no. 6, pp. 615–635, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. M. D. Hayward and M. J. Low, “The effect of naloxone on operant behavior for food reinforcers in DBA/2 mice,” Brain Research Bulletin, vol. 56, no. 6, pp. 537–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. L. D. McKay, N. J. Kenney, N. K. Edens et al., “Intracerebroventricular beta-endorphin increases food intake of rats,” Life Sciences, vol. 29, no. 14, pp. 1429–1434, 1981. View at Google Scholar · View at Scopus
  70. S. M. Appleyard, M. Hayward, J. I. Young et al., “A role for the endogenous opioid β-endorphin in energy homeostasis,” Endocrinology, vol. 144, no. 5, pp. 1753–1760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. A. G. Faletti, C. A. Mastronardi, A. Lomniczi et al., “β-endorphin blocks luteinizing hormone-releasing hormone release by inhibiting the nitricoxidergic pathway controlling its release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1722–1726, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. P. M. Gilbeau, R. G. Almirez, J. W. Holaday, and C. G. Smith, “Opioid effects on plasma concentrations of luteinizing hormone and prolactin in the adult male rhesus monkey,” Journal of Clinical Endocrinology and Metabolism, vol. 60, no. 2, pp. 299–305, 1985. View at Google Scholar · View at Scopus
  73. K. Taya and S. Sasamoto, “Inhibitory effects of corticotrophin-releasing factor and β-endorphin on LH and FSH secretion in the lactating rat,” Journal of Endocrinology, vol. 120, no. 3, pp. 509–515, 1989. View at Google Scholar · View at Scopus
  74. H. Jarry, S. Leonhardt, and W. Wuttke, “The inhibitory effect of β-endorphin on LH release in ovariectomized rats does not involve the preoptic GABAergic system,” Experimental and Clinical Endocrinology and Diabetes, vol. 103, no. 5, pp. 317–323, 1995. View at Google Scholar · View at Scopus
  75. M. O. Ciechanowska, M. Lapot, T. Malewski, K. Mateusiak, T. Misztal, and F. Przekop, “The central effect of β-endorphin and naloxone on the expression of GnRH gene and GnRH receptor (GnRH-R) gene in the hypothalamus, and on GnRH-R gene in the anterior pituitary gland in follicular phase ewes,” Experimental and Clinical Endocrinology and Diabetes, vol. 116, no. 1, pp. 40–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Kubo, Y. Kiyota, and S. Fukunaga, “Effects of third ventricular injection of β-endorphin on luteinizing hormone surges in female rat: site and mechanisms of opioid actions in the brain,” Endocrinologia Japonica, vol. 30, no. 3, pp. 419–433, 1983. View at Google Scholar · View at Scopus
  77. D. J. S. Sirinathsinghji, “Modulation of lordosis behavior of female rats by naloxone, β-endorphin and its antiserum in the mesencephalic central gray: possible mediation via GnRH,” Neuroendocrinology, vol. 39, no. 3, pp. 222–230, 1984. View at Google Scholar · View at Scopus
  78. T. J. Cicero, B. A. Schainker, and E. R. Meyer, “Endogenous opioids participate in the regulation of the hypothalamic-pituitary-luteinizing hormone axis and testosterone's negative feedback control of luteinizing hormone,” Endocrinology, vol. 104, no. 5, pp. 1286–1291, 1979. View at Google Scholar · View at Scopus
  79. F. J. P. Ebling, M. L. Schwartz, and D. L. Foster, “Endogenous opioid regulation of pulsatile luteinizing hormone secretion during sexual maturation in the female sheep,” Endocrinology, vol. 125, no. 1, pp. 369–383, 1989. View at Google Scholar · View at Scopus
  80. P. M. Gilbeau and C. G. Smith, “Naloxone reversal of stress-induced reproductive effects in the male rhesus monkey,” Neuropeptides, vol. 5, no. 4–6, pp. 335–338, 1985. View at Google Scholar · View at Scopus
  81. J. Blankstein, F. I. Reyes, J. S. D. Winter, and C. Faiman, “Endorphins and the regulation of the human menstrual cycle,” Clinical Endocrinology, vol. 14, no. 3, pp. 287–294, 1981. View at Google Scholar · View at Scopus
  82. M. Rubinstein, J. S. Mogil, M. Japón, E. C. Chan, R. G. Allen, and M. J. Low, “Absence of opioid stress-induced analgesia in mice lacking β-endorphin by site-directed mutagenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 3995–4000, 1996. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Ogata, T. Matsuzaki, T. Iwasa et al., “Hypothalamic ghrelin suppresses pulsatile secretion of luteinizing hormone via β-endorphin in ovariectomized rats,” Neuroendocrinology, vol. 90, no. 4, pp. 364–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. A. H. Lagrange, O. K. Rønnekleiv, and M. J. Kelly, “Estradiol-17β and μ-opioid peptides rapidly hyperpolarize GnRH neurons: a cellular mechanism of negative feedback?” Endocrinology, vol. 136, no. 5, pp. 2341–2344, 1995. View at Publisher · View at Google Scholar · View at Scopus
  85. N. L. Wayne and K. Kuwahara, “β-endorphin alters electrical activity of gonadotropin releasing hormone neurons located in the terminal nerve of the teleost medaka (Oryzias latipes),” General and Comparative Endocrinology, vol. 150, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. V. Mitchell, V. Prevot, L. Jennes, J. P. Aubert, D. Croix, and J. C. Beauvillain, “Presence of μ and κ opioid receptor mRNAs in galanin but not in GnRH neurons in the female rat,” NeuroReport, vol. 8, no. 14, pp. 3167–3172, 1997. View at Google Scholar · View at Scopus
  87. M. I. Sannella and S. L. Petersen, “Dual label in situ hybridization studies provide evidence that luteinizing hormone-releasing hormone neurons do not synthesize messenger ribonucleic acid for μ, κ, or δ opiate receptors,” Endocrinology, vol. 138, no. 4, pp. 1667–1672, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. G. K. Bhat, V. B. Mahesh, L. Ping, L. Chorich, V. T. Wiedmeier, and D. W. Brann, “Opioid-glutamate-nitric oxide connection in the regulation of luteinizing hormone secretion in the rat,” Endocrinology, vol. 139, no. 3, pp. 955–960, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Broberger, “Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y,” Brain Research, vol. 848, no. 1-2, pp. 101–113, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. T. A. Rondini, S. P. Baddini, L. F. Sousa, J. C. Bittencourt, and C. F. Elias, “Hypothalamic cocaine- and amphetamine-regulated transcript neurons project to areas expressing gonadotropin releasing hormone immunoreactivity and to the anteroventral periventricular nucleus in male and female rats,” Neuroscience, vol. 125, no. 3, pp. 735–748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. R. L. Leshan, D. M. Opland, G. W. Louis et al., “Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine- and amphetamine-regulated transcript neurons of the extended central amygdala,” Journal of Neuroscience, vol. 30, no. 16, pp. 5713–5723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Kristensen, M. E. Judge, L. Thim et al., “Hypothalamic CART is a new anorectic peptide regulated by leptin,” Nature, vol. 393, no. 6680, pp. 72–76, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. P. D. Lambert, P. R. Couceyro, K. M. McGirr, S. E. Dall Vechia, Y. Smith, and M. J. Kuhar, “CART peptides in the central control of feeding and interactions with neuropeptide Y.,” Synapse, vol. 29, no. 4, pp. 293–298, 1998. View at Google Scholar
  94. M. C. Lebrethon, E. Vandersmissen, A. Gérard, A. S. Parent, J. L. Junien, and J. P. Bourguignon, “In vitro stimulation of the prepubertal rat gonadotropin-releasing hormone pulse generator by leptin and neuropeptide Y through distinct mechanisms,” Endocrinology, vol. 141, no. 4, pp. 1464–1469, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. M. C. Lebrethon, E. Vandersmissen, A. Gérard, A. S. Parent, and J. P. Bourguignon, “Cocaine and amphetamine-regulated-transcript peptide mediation of leptin stimulatory effect on the rat gonadotropin-releasing hormone pulse generator in vitro,” Journal of Neuroendocrinology, vol. 12, no. 5, pp. 383–385, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. C. True, S. Verma, K. L. Grove, and M. S. Smith, “Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and Kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females,” Endocrinology, vol. 154, no. 8, pp. 2821–2832, 2013. View at Publisher · View at Google Scholar
  97. B. M. Chronwall, D. A. DiMaggio, V. J. Massari et al., “The anatomy of neuropeptide-Y-containing neurons in rat brain,” Neuroscience, vol. 15, no. 4, pp. 1159–1181, 1985. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Broberger, J. Johansen, C. Johansson, M. Schalling, and T. Hökfelt, “The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 15043–15048, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Aponte, D. Atasoy, and S. M. Sternson, “AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training,” Nature Neuroscience, vol. 14, no. 3, pp. 351–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Gerald, M. W. Walker, L. Criscione et al., “A receptor subtype involved in neuropeptide-Y-induced food intake,” Nature, vol. 382, no. 6587, pp. 168–171, 1996. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Wyss, A. Stricker-Krongrad, L. Brunner et al., “The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes,” Regulatory Peptides, vol. 75-76, pp. 363–371, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Sun and R. J. Miller, “Multiple neuropeptide Y receptors regulate K+ and Ca2+ channels in acutely isolated neurons from the rat arcuate nucleus,” Journal of Neurophysiology, vol. 81, no. 3, pp. 1391–1403, 1999. View at Google Scholar · View at Scopus
  103. Y. Dumont, P. Gaudreau, M. Mazzuferi et al., “BODIPY-conjugated neuropeptide Y ligands: new fluorescent tools to tag Y1, Y2, Y4 and Y5 receptor subtypes,” British Journal of Pharmacology, vol. 146, no. 8, pp. 1069–1081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. R. M. Parker and H. Herzog, “Regional distribution of Y-receptor subtype mRNAs in rat brain,” European Journal of Neuroscience, vol. 11, no. 4, pp. 1431–1448, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Lin, D. Boey, and H. Herzog, “NPY and Y receptors: lessons from transgenic and knockout models,” Neuropeptides, vol. 38, no. 4, pp. 189–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Li, P. Chen, and M. S. Smith, “Morphological evidence for direct interaction between arcuate nucleus neuropeptide Y (NPY) neurons and gonadotropin-releasing hormone neurons and the possible involvement of NPY Y1 receptors,” Endocrinology, vol. 140, no. 11, pp. 5382–5390, 1999. View at Google Scholar · View at Scopus
  107. L. S. Brady, M. A. Smith, P. W. Gold, and M. Herkenham, “Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats,” Neuroendocrinology, vol. 52, no. 5, pp. 441–447, 1990. View at Google Scholar · View at Scopus
  108. J. K. McDonald, M. D. Lumpkin, and L. V. DePaolo, “Neuropeptide-Y suppresses pulsatile secretion of luteinizing hormone in ovariectomized rats: possible site of action,” Endocrinology, vol. 125, no. 1, pp. 186–191, 1989. View at Google Scholar · View at Scopus
  109. C. Catzeflis, D. D. Pierroz, F. Rohner-Jeanrenaud, J. E. Rivier, P. C. Sizonenko, and M. L. Aubert, “Neuropeptide Y administered chronically into the lateral ventricle profoundly inhibits both the gonadotropic and the somatotropic axis in intact adult female rats,” Endocrinology, vol. 132, no. 1, pp. 224–234, 1993. View at Publisher · View at Google Scholar · View at Scopus
  110. M. R. Jain, S. Pu, P. S. Kalra et al., “Evidence that stimulation of two modalities of pituitary luteinizing hormone release in ovarian steroid-primed ovariectomized rats may involve neuropeptide Y Y1 and Y4 receptors,” Endocrinology, vol. 140, no. 11, pp. 5171–5177, 1999. View at Google Scholar · View at Scopus
  111. J. W. Hill and J. E. Levine, “Abnormal response of the neuropeptide Y-deficient mouse reproductive axis to food deprivation but not lactation,” Endocrinology, vol. 144, no. 5, pp. 1780–1786, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. U. Klenke, S. Constantin, and S. Wray, “Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors,” Endocrinology, vol. 151, no. 6, pp. 2736–2746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Xu, M. A. Kirigiti, M. A. Cowley, K. L. Grove, and M. S. Smith, “Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y,” Endocrinology, vol. 150, no. 1, pp. 333–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. T. M. Hahn, J. F. Breininger, D. G. Baskin, and M. W. Schwartz, “Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons,” Nature Neuroscience, vol. 1, no. 4, pp. 271–272, 1998. View at Google Scholar · View at Scopus
  115. M. M. Ollmann, B. D. Wilson, Y. K. Yang et al., “Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein,” Science, vol. 278, no. 5335, pp. 135–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  116. N. R. Vulliémoz, E. Xiao, L. Xia-Zhang, S. L. Wardlaw, and M. Ferin, “Central infusion of agouti-related peptide suppresses pulsatile luteinizing hormone release in the ovariectomized rhesus monkey,” Endocrinology, vol. 146, no. 2, pp. 784–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. Q. Wu, B. B. Whiddon, and R. D. Palmiter, “Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 8, pp. 3155–3160, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Y. Fu and A. N. van den Pol, “Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons,” Journal of Neuroscience, vol. 28, no. 21, pp. 5433–5449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. L. E. Pritchard and A. White, “Agouti-related protein: more than a melanocortin-4 receptor antagonist?” Peptides, vol. 26, no. 10, pp. 1759–1770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. L. Y. Fu and A. N. van den Pol, “Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism,” Journal of Neuroscience, vol. 30, no. 30, pp. 10205–10219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. A. G. Roseberry, H. Liu, A. C. Jackson, X. Cai, and J. M. Friedman, “Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice,” Neuron, vol. 41, no. 5, pp. 711–722, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Krasnow and R. Steiner, “Physiological mechanisms integrating metabolism and reproduction,” in Knobil and Neill's Physiology of Reproduction, J. D. Neill, Ed., pp. 2553–2625, Elsevier, St. Louis, Mo, USA, 3rd edition, 2006. View at Google Scholar
  123. L. Pinilla, E. Aguilar, C. Dieguez, R. P. Millar, and M. Tena-Sempere, “Kisspeptins and reproduction: physiological roles and regulatory mechanisms,” Physiological Reviews, vol. 92, no. 3, pp. 1235–1316, 2012. View at Publisher · View at Google Scholar