Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 638257, 5 pages
http://dx.doi.org/10.1155/2013/638257
Clinical Study

An Evaluation of Growth Hormone and IGF-1 Responses in Neonates with Hyperinsulinaemic Hypoglycaemia

1Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, NHS Trust, WC1N 3JH, UK
2Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK

Received 25 February 2013; Revised 16 August 2013; Accepted 2 September 2013

Academic Editor: Małgorzata Kotula-Balak

Copyright © 2013 Senthil Senniappan and Khalid Hussain. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Aynsley-Green, K. Hussain, J. Hall et al., “Practical management of hyperinsulinism in infancy,” Archives of Disease in Childhood, vol. 82, no. 2, pp. F98–F107, 2000. View at Google Scholar · View at Scopus
  2. J. Beltrand, M. Caquard, J. B. Arnoux et al., “Glucose metabolism in 105 children and adolescents after pancreatectomy for congenital hyperinsulinism,” Diabetes Care, vol. 35, no. 2, pp. 198–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. H. T. Christesen, K. Brusgaard, and K. Hussain, “Recurrent spontaneous hypoglycaemia causes loss of neurogenic and neuroglycopaenic signs in infants with congenital hyperinsulinism,” Clinical Endocrinology, vol. 76, no. 4, pp. 548–554, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Thomas, Y. Ye, and E. Lightner, “Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy,” Human Molecular Genetics, vol. 5, no. 11, pp. 1809–1812, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. F. M. Ashcroft, D. E. Harrison, and S. J. Ashcroft, “Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells,” Nature, vol. 312, no. 5993, pp. 446–448, 1984. View at Google Scholar · View at Scopus
  6. C. James, R. R. Kapoor, D. Ismail, and K. Hussain, “The genetic basis of congenital hyperinsulinism,” Journal of Medical Genetics, vol. 46, no. 5, pp. 289–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. E. Stanescu, N. Hughes, B. Kaplan, C. A. Stanley, and D. D. de León, “Novel presentations of congenital hyperinsulinism due to mutations in the MODY genes: HNF1A and HNF4A,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 10, pp. E2026–E2030, 2012. View at Google Scholar
  8. P. M. Plotsky and W. Vale, “Patterns of growth hormone-releasing factor and somatostatin secretion into the hypophysial-portal circulation of the rat,” Science, vol. 230, no. 4724, pp. 461–463, 1985. View at Google Scholar · View at Scopus
  9. L. A. Frohman, T. R. Downs, I. J. Clarke, and G. B. Thomas, “Measurement of growth hormone-releasing hormone and somatostatin in hypothalamic-portal plasma of unanesthetized sheep. Spontaneous secretion and response to insulin-induced hypoglycemia,” Journal of Clinical Investigation, vol. 86, no. 1, pp. 17–24, 1990. View at Google Scholar · View at Scopus
  10. A. E. Grassi and M. A. Giuliano, “The neonate with macrosomia,” Clinical Obstetrics and Gynecology, vol. 43, no. 2, pp. 340–348, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Peters and M. T. Dattani, “How to use insulin-like growth factor 1 (IGF1),” Archives of Disease in Childhood, vol. 97, pp. 114–118, 2012. View at Google Scholar
  12. M. B. Ranke, R. Schweizer, A. Lindberg et al., “Insulin-like growth factors as diagnostic tools in growth hormone deficiency during childhood and adolescence: the KIGS experience,” Hormone Research, vol. 62, supplement 1, pp. 17–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. E. L. Katz, M. S. Satin-Smith, P. Collett-Solberg et al., “Insulin-like growth factor binding protein-1 levels in the diagnosis of hypoglycemia caused by hyperinsulinism,” Journal of Pediatrics, vol. 131, no. 2, pp. 193–199, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. A. A. Morris, A. Thekekara, Z. Wilks, P. T. Clayton, J. V. Leonard, and A. Aynsley-Green, “Evaluation of fasts for investigating hypoglycaemia or suspected metabolic disease,” Archives of Disease in Childhood, vol. 75, no. 2, pp. 115–119, 1996. View at Google Scholar · View at Scopus
  15. K. Hussain, P. Hindmarsh, and A. Aynsley-Green, “Neonates with symptomatic hyperinsulinemic hypoglycemia generate inappropriately low serum cortisol counterregulatory hormonal responses,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 9, pp. 4342–4347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Hussain, J. Bryan, H. T. Christesen, K. Brusgaard, and L. Aguilar-Bryan, “Serum glucagon counterregulatory hormonal response to hypoglycemia is blunted in congenital hyperinsulinism,” Diabetes, vol. 54, no. 10, pp. 2946–2951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Chiesa, J. F. Osborn, C. Haass et al., “Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry?” Clinical Chemistry, vol. 54, no. 3, pp. 550–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. de Feo, G. Perriello, E. Torlone et al., “Contribution of cortisol to glucose counterregulation in humans,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 257, no. 1, part 1, pp. E35–E42, 1989. View at Google Scholar · View at Scopus
  19. N. S. Schwartz, W. E. Clutter, S. D. Shah, and P. E. Cryer, “Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms,” Journal of Clinical Investigation, vol. 79, no. 3, pp. 777–781, 1987. View at Google Scholar · View at Scopus
  20. J. V. Santiago, W. L. Clarke, S. D. Shah, and P. E. Cryer, “Epinephrine, norepinephrine, glucagon, and growth hormone release in association with physiological decrements in the plasma glucose concentration in normal and diabetic man,” The Journal of Clinical Endocrinology & Metabolism, vol. 51, no. 4, pp. 877–883, 1980. View at Google Scholar · View at Scopus
  21. Z. Laron, S. Mannheimer, A. Pertzelan, and M. Nitzan, “Serum growth hormone concentration in full term infants,” Israel Journal of Medical Sciences, vol. 2, no. 6, pp. 770–773, 1966. View at Google Scholar · View at Scopus
  22. M. Cornblath, M. L. Parker, S. H. Reisner, A. E. Forbes, and W. H. Daughaday, “Secretion and metabolism of growth hormone in premature and full-term infants,” The Journal of Clinical Endocrinology & Metabolism, vol. 25, pp. 209–218, 1965. View at Google Scholar · View at Scopus
  23. J. Leger, M. Noel, J. M. Limal, and P. Czernichow, “Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulin-like growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal control subjects: prospective study from birth to two years of age. Study Group of IUGR,” Pediatric Research, vol. 40, no. 1, pp. 101–107, 1996. View at Google Scholar · View at Scopus
  24. A. Varvarigou, A. G. Vagenakis, M. Makri, and N. G. Beratis, “Growth hormone, insulin-like growth factor-I and prolactin in small for gestational age neonates,” Biology of the Neonate, vol. 65, no. 2, pp. 94–102, 1994. View at Google Scholar · View at Scopus
  25. G. Binder, M. Weidenkeller, G. Blumenstock, M. Langkamp, K. Weber, and A. R. Franz, “Rational approach to the diagnosis of severe growth hormone deficiency in the newborn,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 5, pp. 2219–2226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Hussain, P. Hindmarsh, and A. Aynsley-Green, “Spontaneous hypoglycemia in childhood is accompanied by paradoxically low serum growth hormone and appropriate cortisol counterregulatory hormonal responses,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 8, pp. 3715–3723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Aynsley-Green, A. McGann, and S. Deshpande, “Control of intermediary metabolism in childhood with special reference to hypoglycaemia and growth hormone,” Acta Paediatrica Scandinavica. Supplement, vol. 377, pp. 43–54, 1991. View at Google Scholar · View at Scopus
  28. S. A. Amiel, D. C. Simonson, W. V. Tamborlane, R. A. DeFronzo, and R. S. Sherwin, “Rate of glucose fall does not affect counterregulatory hormone responses to hypoglycemia in normal and diabetic humans,” Diabetes, vol. 36, no. 4, pp. 518–522, 1987. View at Google Scholar · View at Scopus
  29. M. K. Javaid, K. M. Godfrey, P. Taylor et al., “Umbilical venous IGF-1 concentration, neonatal bone mass, and body composition,” Journal of Bone and Mineral Research, vol. 19, no. 1, pp. 56–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Verhaeghe, R. van Bree, E. van Herck, J. Laureys, R. Bouillon, and F. A. van Assche, “C-peptide, insulin-like growth factors I and II, and insulin-like growth factor binding protein-1 in umbilical cord serum: correlations with birth weight,” The American Journal of Obstetrics and Gynecology, vol. 169, no. 1, pp. 89–97, 1993. View at Google Scholar · View at Scopus
  31. A. L. Ogilvy-Stuart, S. J. Hands, C. J. Adcock et al., “Insulin, insulin-like growth factor I (IGF-I), IGF-binding protein-1, growth hormone, and feeding in the newborn,” The Journal of Clinical Endocrinology & Metabolism, vol. 83, no. 10, pp. 3550–3557, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. P. E. Clayton and C. M. Hall, “Insulin-like growth factor I levels in healthy children,” Hormone Research, vol. 62, supplement 1, pp. 2–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. F. Casanueva, L. Villanueva, C. Dieguez et al., “Free fatty acids block growth hormone (GH) releasing hormone-stimulated GH secretion in man directly at the pituitary,” The Journal of Clinical Endocrinology & Metabolism, vol. 65, no. 4, pp. 634–642, 1987. View at Google Scholar · View at Scopus
  34. S. E. Fineberg, A. A. Horland, and T. J. Merimee, “Free fatty acid concentrations and growth hormone secretion in man,” Metabolism, vol. 21, no. 6, pp. 491–498, 1972. View at Google Scholar · View at Scopus
  35. T. Tsushima, F. Matsuzaki, and M. Irie, “Effect of heparin administration on plasma growth hormone concentrations,” Proceedings of the Society for Experimental Biology and Medicine, vol. 133, no. 3, pp. 1084–1087, 1970. View at Google Scholar · View at Scopus