Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 746281, 8 pages
http://dx.doi.org/10.1155/2013/746281
Review Article

Irisin, Two Years Later

1Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain
2CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain

Received 28 June 2013; Accepted 1 October 2013

Academic Editor: Paolo de Girolamo

Copyright © 2013 Marta G. Novelle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. G. Kopelman, “Obesity as a medical problem,” Nature, vol. 404, no. 6778, pp. 635–643, 2000. View at Google Scholar · View at Scopus
  2. N. S. Mitchell, V. A. Catenacci, H. R. Wyatt, and J. O. Hill, “Obesity: overview of an epidemic,” Psychiatric Clinics of North America, vol. 34, no. 4, pp. 717–732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Strasser, “Physical activity in obesity and metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1281, pp. 141–159, 2013. View at Publisher · View at Google Scholar
  4. B. K. Pedersen, T. C. A. Åkerström, A. R. Nielsen, and C. P. Fischer, “Role of myokines in exercise and metabolism,” Journal of Applied Physiology, vol. 103, no. 3, pp. 1093–1098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. K. Pedersen and M. A. Febbraio, “Muscles, exercise and obesity: skeletal muscle as a secretory organ,” Nature Reviews Endocrinology, vol. 8, pp. 457–465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Cypess, S. Lehman, G. Williams et al., “Identification and importance of brown adipose tissue in adult humans,” New England Journal of Medicine, vol. 360, no. 15, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected evidence for active brown adipose tissue in adult humans,” American Journal of Physiology, vol. 293, no. 2, pp. E444–E452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. W. D. van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown adipose tissue in healthy adults,” New England Journal of Medicine, vol. 360, no. 15, pp. 1518–1525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Cannon and J. Nedergaard, “Brown adipose tissue: function and physiological significance,” Physiological Reviews, vol. 84, no. 1, pp. 277–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. Spiegelman, “A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis,” Cell, vol. 92, no. 6, pp. 829–839, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Uldry, W. Yang, J. St-Pierre, J. Lin, P. Seale, and B. M. Spiegelman, “Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation,” Cell Metabolism, vol. 3, no. 5, pp. 333–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Villena, M. C. Carmona, M. Rodriguez de la Concepción et al., “Mitochondrial biogenesis in brown adipose tissue is associated with differential expression of transcription regulatory factors,” Cellular and Molecular Life Sciences, vol. 59, no. 11, pp. 1934–1944, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Baar, A. R. Wende, T. E. Jones et al., “Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1,” FASEB Journal, vol. 16, no. 14, pp. 1879–1886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Pilegaard, B. Saltin, and D. P. Neufer, “Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle,” Journal of Physiology, vol. 546, no. 3, pp. 851–858, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Jäer, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. P. Russell, J. Feilchenfeldt, S. Schreiber et al., “Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle,” Diabetes, vol. 52, no. 12, pp. 2874–2881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Wenz, S. G. Rossi, R. L. Rotundo, B. M. Spiegelman, and C. T. Moraes, “Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20405–20410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Boström, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Xu, Z. Ying, M. Cai et al., “Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue,” American Journal of Physiology, vol. 300, no. 5, pp. R1115–R1125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ferrer-Martínez, P. Ruiz-Lozano, and K. R. Chien, “Mouse PeP: a novel peroxisomal protein linked to myoblast differentiation and development,” Developmental Dynamics, vol. 224, no. 2, pp. 154–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Teufel, N. Malik, M. Mukhopadhyay, and H. Westphal, “Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes,” Gene, vol. 297, no. 1-2, pp. 79–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. H. P. Erickson, “Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor?” Adipocyte, vol. 2, pp. 289–293, 2013. View at Publisher · View at Google Scholar
  25. A. Roca-Rivada, C. Castelao, L. L. Senin et al., “FNDC5/irisin is not only a myokine but also an adipokine,” PLoS One, vol. 8, Article ID e60563, 2013. View at Google Scholar
  26. B. M. Spiegelman, “Banting lecture 2012: regulation of adipogenesis: toward new therapeutics for metabolic disease,” Diabetes, vol. 62, no. 6, pp. 1774–1782, 2013. View at Publisher · View at Google Scholar
  27. L. Pedersen and P. Hojman, “Muscle-to-organ cross talk mediated by myokines,” Adipocyte, vol. 1, no. 3, pp. 164–167, 2012. View at Publisher · View at Google Scholar
  28. S. Raschke and J. Eckel, “Adipo-myokines: two sides of the same coin—mediators of inflammation and mediators of exercise,” Mediators of Inflammation, vol. 2013, Article ID 320724, 16 pages, 2013. View at Publisher · View at Google Scholar
  29. Z. Huang, X. Chen, and D. Chen, “Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation,” Cellular Signalling, vol. 23, no. 9, pp. 1441–1446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Shan, X. Liang, P. Bi, and S. Kuang, “Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1alpha-Fndc5 pathway in muscle,” The FASEB Journal, vol. 27, no. 5, pp. 1981–1989, 2013. View at Publisher · View at Google Scholar
  31. N. Sharma, C. M. Castorena, and G. D. Cartee, “Greater insulin sensitivity in calorie restricted rats occurs with unaltered circulating levels of several important myokines and cytokines,” Nutrition & Metabolism, vol. 9, p. 90, 2012. View at Publisher · View at Google Scholar
  32. J. Sanchez, Y. Nozhenko, A. Palou, and A. M. Rodriguez, “Free fatty acid effects on myokine production in combination with exercise mimetics,” Molecular Nutrition & Food Research, vol. 57, no. 8, pp. 1456–1467, 2013. View at Publisher · View at Google Scholar
  33. R. A. Vaughan, R. Garcia-Smith, M. Bisoffi, C. A. Conn, and K. A. Trujillo, “Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells,” Lipids in Health and Disease, vol. 11, p. 142, 2012. View at Publisher · View at Google Scholar
  34. M. Bordicchia, D. Liu, E. Amri et al., “Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes,” Journal of Clinical Investigation, vol. 122, no. 3, pp. 1022–1036, 2012. View at Publisher · View at Google Scholar
  35. D. P. Kelly, “Medicine: Irisin, light my fire,” Science, vol. 335, no. 6077, pp. 42–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. A. J. Whittle and A. Vidal-Puig, “NPs-heart hormones that regulate brown fat?” Journal of Clinical Investigation, vol. 122, no. 3, pp. 804–807, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. D. Roberts, D. S. Bayless, J. M. Company et al., “Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats,” Metabolism, vol. 62, no. 8, pp. 1052–1056, 2013. View at Publisher · View at Google Scholar
  38. H. S. Moon, M. Dalamaga, S. Y. Kim et al., “Leptin's role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals,” Endocrine Reviews, vol. 34, no. 3, pp. 377–412, 2013. View at Publisher · View at Google Scholar
  39. J. I. Castillo-Quan, “Parkin' control: regulation of PGC-1α through PARIS in Parkinson's disease,” DMM Disease Models and Mechanisms, vol. 4, no. 4, pp. 427–429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Cui, H. Jeong, F. Borovecki, C. N. Parkhurst, N. Tanese, and D. Krainc, “Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration,” Cell, vol. 127, no. 1, pp. 59–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Lin, P. Wu, P. T. Tarr et al., “Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice,” Cell, vol. 119, no. 1, pp. 121–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. L. Dun, R. M. Lyu, Y. H. Chen, J. K. Chang, J. J. Luo, and N. J. Dun, “Irisin-immunoreactivity in neural and non-neural cells of the rodent,” Neuroscience, vol. 240, pp. 155–162, 2013. View at Publisher · View at Google Scholar
  43. M. S. Hashemi, K. Ghaedi, A. Salamian et al., “Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells,” Neuroscience, vol. 231, pp. 296–304, 2013. View at Publisher · View at Google Scholar
  44. H. S. Moon, F. Dincer, and C. S. Mantzoros, “Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines,” Metabolism, vol. 62, no. 8, pp. 1131–1136, 2013. View at Google Scholar
  45. K. I. Erickson, A. M. Weinstein, and O. L. Lopez, “Physical activity, brain plasticity, and Alzheimer's disease,” Archives of Medical Research, vol. 43, no. 8, pp. 615–621, 2012. View at Publisher · View at Google Scholar
  46. M. P. Mattson, “Energy intake and exercise as determinants of brain health and vulnerability to injury and disease,” Cell Metabolism, vol. 16, no. 6, pp. 706–722, 2012. View at Google Scholar
  47. J. Y. Huh, G. Panagiotou, V. Mougios et al., “FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise,” Metabolism, vol. 61, no. 12, pp. 1725–1738, 2012. View at Google Scholar
  48. J. M. Moreno-Navarrete, F. Ortega, M. Serrano et al., “Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance,” Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 4, pp. E769–E778, 2013. View at Publisher · View at Google Scholar
  49. J. A. Timmons, K. Baar, P. K. Davidsen, and P. J. Atherton, “Is irisin a human exercise gene?” Nature, vol. 488, pp. E9–E10, 2012. View at Google Scholar
  50. S. Pekkala, P. Wiklund, J. J. Hulmi et al., “Are skeletal muscle FNDC5 gene expression and Irisin release regulated by exercise and related to health?” Journal of Physiology, 2013. View at Google Scholar
  51. C. Moraes, V. O. Leal, S. M. Marinho et al., “Resistance exercise training does not affect plasma Irisin levels of hemodialysis patients,” Hormone and Metabolic Research, 2013. View at Google Scholar
  52. K. H. Park, L. Zaichenko, M. Brinkoetter et al., “Circulating Irisin in relation to insulin resistance and the metabolic syndrome,” Journal of Clinical Endocrinology & Metabolism, 2013. View at Google Scholar
  53. A. Stengel, T. Hofmann, M. Goebel-Stengel, U. Elbelt, P. Kobelt, and B. F. Klapp, “Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index,” Peptides, vol. 39, pp. 125–130, 2013. View at Publisher · View at Google Scholar
  54. Y. K. Choi, M. K. Kim, K. H. Bae et al., “Serum irisin levels in new-onset type 2 diabetes,” Diabetes Research and Clinical Practice, vol. 100, no. 1, pp. 96–101, 2013. View at Google Scholar
  55. J. J. Liu, M. D. Wong, W. C. Toy et al., “Lower circulating irisin is associated with type 2 diabetes mellitus,” Journal of Diabetes and its Complications, vol. 27, no. 4, pp. 365–369, 2013. View at Google Scholar
  56. H. Staiger, A. Bohm, M. Scheler et al., “Common genetic variation in the human FNDC5 locus, encoding the novel muscle-derived “Browning” factor Irisin, determines insulin sensitivity,” PLoS One, vol. 8, Article ID e61903, 2013. View at Google Scholar
  57. S. H. Lecker, A. Zavin, P. Cao et al., “Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure,” Circulation, vol. 5, pp. 812–818, 2012. View at Publisher · View at Google Scholar
  58. M. S. Wen, C. Y. Wang, S. L. Lin, and K. C. Hung, “Decrease in irisin in patients with chronic kidney disease,” PLoS One, vol. 8, Article ID e64025, 2013. View at Google Scholar
  59. H. J. Zhang, X. F. Zhang, Z. M. Ma et al., “Irisin is inversely associated with intrahepatic triglyceride contents in obese adults,” Journal of Hepatology, vol. 59, no. 3, pp. 557–562, 2013. View at Publisher · View at Google Scholar
  60. A. G. Swick, S. Orena, and A. O'Connor, “Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat free mass,” Metabolism, vol. 62, no. 8, pp. 1070–1073, 2013. View at Google Scholar
  61. P. F. Kokkinos, C. Faselis, J. Myers, D. Panagiotakos, and M. Doumas, “Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study,” The Lancet, vol. 381, no. 9864, pp. 394–399, 2013. View at Publisher · View at Google Scholar
  62. I. Gouni-Berthold, H. K. Berthold, J. Y. Huh et al., “Effects of lipid-lowering drugs on irisin in human subjects in vivo and in human skeletal muscle cells ex vivo,” PLoS One, vol. 8, Article ID e72858, 2013. View at Google Scholar
  63. S. Raschke, M. Elsen, H. Gassenhuber et al., “Evidence against a beneficial effect of Irisin in humans,” PLoS One, vol. 8, Article ID e73680, 2013. View at Google Scholar