Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 768579, 9 pages
http://dx.doi.org/10.1155/2013/768579
Research Article

Glucocorticoid-Induced Bone Loss Is Associated with Abnormal Intravertebral Areal Bone Mineral Density Distribution

1University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
2Bone and Mineral Service, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
3Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
4Arthritis Victoria and Osteoporosis Victoria, Elsternwick, VIC 3185, Australia

Received 3 January 2013; Accepted 16 April 2013

Academic Editor: Cory Xian

Copyright © 2013 Louise I. Manning et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Takahata, J. R. Maher, S. C. Juneja et al., “Mechanisms of bone fragility in a mouse model of glucocorticoid-treated rheumatoid arthritis: implications for insufficiency fracture risk,” Arthritis & Rheumatism, vol. 64, no. 11, pp. 3649–3659, 2012. View at Google Scholar
  2. T. P. van Staa, R. F. Laan, I. P. Barton, S. Cohen, D. M. Reid, and C. Cooper, “Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy,” Arthritis and Rheumatism, vol. 48, no. 11, pp. 3224–3229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. P. van Staa, H. G. M. Leufkens, L. Abenhaim, B. Zhang, and C. Cooper, “Use of oral corticosteroids and risk of fractures,” Journal of Bone and Mineral Research, vol. 15, no. 6, pp. 993–1000, 2000. View at Google Scholar · View at Scopus
  4. K. Natsui, K. Tanaka, M. Suda et al., “High-dose glucocorticoid treatment induces rapid loss of trabecular bone mineral density and lean body mass,” Osteoporosis International, vol. 17, no. 1, pp. 105–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. N. J. De Nijs, J. W. G. Jacobs, J. W. J. Bijlsma et al., “Prevalence of vertebral deformities and symptomatic vertebral fractures in corticosteroid treated patients with rheumatoid arthritis,” Rheumatology, vol. 40, no. 12, pp. 1375–1383, 2001. View at Google Scholar · View at Scopus
  6. M. S. van Brussel and W. F. Lems, “Clinical relevance of diagnosing vertebral fractures by vertebral fracture assessment,” Current Osteoporosis Reports, vol. 7, no. 3, pp. 103–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Steinbuch, T. E. Youket, and S. Cohen, “Oral glucocorticoid use is associated with an increased risk of fracture,” Osteoporosis International, vol. 15, no. 4, pp. 323–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Bouvard, M. Audran, E. Legrand, and D. Chappard, “Ultrastructural characteristics of glucocorticoid-induced osteoporosis,” Osteoporosis International, vol. 20, no. 6, pp. 1089–1092, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Lekamwasam, J. Adachi, D. Agnusdei et al., “A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis,” Osteoporosis International, vol. 23, no. 9, pp. 2257–2276, 2012. View at Google Scholar
  10. R. S. Weinstein, “Glucocorticoid-induced osteoporosis,” Reviews in Endocrine and Metabolic Disorders, vol. 2, no. 1, pp. 65–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. M. R. Pereira and J. Freire de Carvalho, “Glucocorticoid-induced myopathy,” Joint Bone Spine, vol. 78, no. 1, pp. 41–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Roux, “Are glucocorticoids really deleterious to bone health?” Joint Bone Spine, vol. 78, supplement 2, pp. S211–S213, 2011. View at Google Scholar
  14. N. E. Lane, “Epidemiology, etiology, and diagnosis of osteoporosis,” American Journal of Obstetrics and Gynecology, vol. 194, no. 2, Supplement, pp. S3–S11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. D. Schuiling, K. Robinia, and R. Nye, “Osteoporosis update,” Journal of Midwifery & Women'S Health, vol. 56, no. 6, pp. 615–627, 2011. View at Google Scholar
  16. H. K. Genant, J. Li, C. Y. Wu, and J. A. Shepherd, “Vertebral fractures in osteoporosis: a new method for clinical assessment,” Journal of Clinical Densitometry, vol. 3, no. 3, pp. 281–290, 2000. View at Google Scholar · View at Scopus
  17. B. Buehring, D. Krueger, M. Checovich et al., “Vertebral fracture assessment: impact of instrument and reader,” Osteoporosis International, vol. 21, no. 3, pp. 487–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. C. van der Weijden, I. E. van der Horst-Bruinsma, J. C. van Denderen et al., “High frequency of vertebral fractures in early spondylarthropathies,” Osteoporosis International, vol. 23, no. 6, pp. 1683–1690, 2012. View at Google Scholar
  19. A. El Maghraoui, A. Mounach, A. Rezqi et al., “Vertebral fracture assessment in asymptomatic men and its impact on management,” Bone, vol. 50, no. 4, pp. 853–857, 2012. View at Google Scholar
  20. A. M. Greig, K. L. Bennell, A. M. Briggs, J. D. Wark, and P. W. Hodges, “Balance impairment is related to vertebral fracture rather than thoracic kyphosis in individuals with osteoporosis,” Osteoporosis International, vol. 18, no. 4, pp. 543–551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Briggs, A. M. Greig, K. L. Bennell, and P. W. Hodges, “Paraspinal muscle control in people with osteoporotic vertebral fracture,” European Spine Journal, vol. 16, no. 8, pp. 1137–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Kanis, O. Johnell, C. De Laet et al., “A meta-analysis of previous fracture and subsequent fracture risk,” Bone, vol. 35, no. 2, pp. 375–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Kanis, A. Oden, O. Johnell et al., “The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women,” Osteoporosis International, vol. 18, no. 8, pp. 1033–1046, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. P. D. Delmas, L. D. van Langerijt, N. B. Watts et al., “Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study,” Journal of Bone and Mineral Research, vol. 20, no. 4, pp. 557–563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Bazzocchi, P. Spinnato, F. Fuzzi et al., “Vertebral fracture assessment by new dual-energy X-ray absorptiometry,” Bone, vol. 50, no. 4, pp. 836–841, 2012. View at Google Scholar
  26. M. Ghazi, S. Kolta, K. Briot, J. Fechtenbaum, S. Paternotte, and C. Roux, “Prevalence of vertebral fractures in patients with rheumatoid arthritis: revisiting the role of glucocorticoids,” Osteoporosis International, vol. 23, no. 2, pp. 581–587, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Maghraoui, A. Rezqi, A. Mounach, L. Achemlal, A. Bezza, and I. Ghozlani, “Prevalence and risk factors of vertebral fractures in women with rheumatoid arthritis using vertebral fracture assessment,” Rheumatology, vol. 49, no. 7, Article ID keq084, pp. 1303–1310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Singer, “Osteoporosis diagnosis and screening,” Clinical Cornerstone, vol. 8, no. 1, pp. 9–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Bürklein, E. M. Lochmüller, V. Kuhn et al., “Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry,” Journal of Biomechanics, vol. 34, no. 5, pp. 579–587, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Zmuda, J. A. Cauley, N. W. Glynn, and J. S. Finkelstein, “Posterior-anterior and lateral dual-energy x-ray absorptiometry for the assessment of vertebral osteoporosis and bone loss among older men,” Journal of Bone and Mineral Research, vol. 15, no. 7, pp. 1417–1424, 2000. View at Google Scholar · View at Scopus
  31. I. R. Reid, M. C. Evans, and J. Stapleton, “Lateral spine densitometry is a more sensitive indicator of glucocorticoid-induced bone loss,” Journal of Bone and Mineral Research, vol. 7, no. 10, pp. 1221–1225, 1992. View at Google Scholar · View at Scopus
  32. J. S. Finkelstein, R. L. Cleary, J. P. Butler et al., “A comparison of lateral versus anterior-posterior spine dual energy x-ray absorptiometry for the diagnosis of osteopenia,” Journal of Clinical Endocrinology and Metabolism, vol. 78, no. 3, pp. 724–730, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Jergas, M. Breitenseher, C. C. Gluer et al., “Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine,” Osteoporosis International, vol. 5, no. 3, pp. 196–204, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Guglielmi, S. K. Grimston, K. C. Fischer, and R. Pacifici, “Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT,” Radiology, vol. 192, no. 3, pp. 845–850, 1994. View at Google Scholar · View at Scopus
  35. F. W. Lafferty and D. Y. Rowland, “Correlations of dual-energy X-ray absorptiometry, quantitative computed tomography, and single photon absorptiometry with spinal and non-spinal fractures,” Osteoporosis International, vol. 6, no. 5, pp. 407–415, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Wegrzyn, J. P. Roux, M. E. Arlot et al., “Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae,” Journal of Bone and Mineral Research, vol. 25, no. 11, pp. 2324–2331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Briggs, A. M. Greig, and J. D. Wark, “The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis,” Osteoporosis International, vol. 18, no. 5, pp. 575–584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Briggs, J. D. Wark, S. Kantor, N. L. Fazzalari, A. M. Greig, and K. L. Bennell, “Bone mineral density distribution in thoracic and lumbar vertebrae: an ex vivo study using dual energy X-ray absorptiometry,” Bone, vol. 38, no. 2, pp. 286–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Cvijanovic, D. Bobinac, S. Zoricic et al., “Age- and region-dependent changes in human lumbar vertebral bone a histomorphometric study,” Spine, vol. 29, no. 21, pp. 2370–2375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Pollintine, J. H. Tobias, D. S. McNally et al., “Intervertebral disc degeneration increases load-bearing by the neural arch and reduces BMD in the anterior vertebral body,” Journal of Bone and Mineral Research, vol. 17, pp. S178–S178, 2002. View at Google Scholar
  41. A. M. Briggs, J. D. Wark, S. Kantor et al., “In vivo intrarater and interrater precision of measuring apparent bone mineral density in vertebral subregions using supine lateral dual-energy X-ray absorptiometry,” Journal of Clinical Densitometry, vol. 8, no. 3, pp. 314–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Briggs, E. Perilli, I. H. Parkinson et al., “Novel assessment of subregional bone mineral density using DXA and pQCT and subregional microarchitecture using micro-CT in whole human vertebrae: applications, methods, and correspondence between Technologies,” Journal of Clinical Densitometry, vol. 13, no. 2, pp. 161–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Briggs, E. Perilli, I. Parkinson et al., “Measurement of subregional vertebral bone mineral density in vitro using lateral projection dual-energy X-ray absorptiometry: validation with peripheral quantitative computed tomography,” Journal of Bone & Mineral Metabolism, vol. 30, no. 2, pp. 222–231, 2012. View at Google Scholar
  44. E. Perilli, A. M. Briggs, S. Kantor et al., “Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT,” Bone, vol. 50, pp. 1416–1425, 2012. View at Google Scholar
  45. E. Perilli, A. M. Briggs, J. D. Codrington et al., “Vertebral body strength: prediction using subregional areal bone mineral density from DXA compared to subregional bone microarchitecture from micro-CT,” in Proceedings of the Australian and New Zealand Bone and Mineral Society Annual Scientific Meeting, Perth, Australia, 2012.
  46. H. K. Genant, C. Y. Wu, C. van Kuijk, and M. C. Nevitt, “Vertebral fracture assessment using a semiquantitative technique,” Journal of Bone and Mineral Research, vol. 8, no. 9, pp. 1137–1148, 1993. View at Google Scholar · View at Scopus
  47. World Health Organization Collaborating Centre for Metabolic Bone Diseases, “Welcome to FRAX,” in WHO Fracture Risk Assessment Tool, University of Sheffield, Sheffield, UK, http://www.shef.ac.uk/FRAX/.
  48. J. A. Rea, J. Li, G. M. Blake, P. Steiger, H. K. Genant, and I. Fogelman, “Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity,” Osteoporosis International, vol. 11, no. 8, pp. 660–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. R. D. Chapurlat, F. Duboeuf, H. O. Marion-Audibert, B. Kalpakçioglu, B. H. Mitlak, and P. D. Delmas, “Effectiveness of instant vertebral assessment to detect prevalent vertebral fracture,” Osteoporosis International, vol. 17, no. 8, pp. 1189–1195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Hologic-Inc, QDR 4500 Fan Beam X-ray Bone Densitometer: User's Guide, Waltham, Mass, USA, 1996.
  51. H. K. Genant and M. Jergas, “Assessment of prevalent and incident vertebral fractures in osteoporosis research,” Osteoporosis International, vol. 14, pp. S43–S55, 2003. View at Google Scholar · View at Scopus
  52. J. T. Schousboe, T. Vokes, S. B. Broy et al., “Vertebral fracture assessment: the 2007 ISCD official positions,” Journal of Clinical Densitometry, vol. 11, no. 1, pp. 92–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Diacinti, D. Pisani, R. Del Fiacco et al., “Vertebral morphometry by X-ray absorptiometry: which reference data for vertebral heights?” Bone, vol. 49, no. 3, pp. 526–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. M. Briggs, Pathomechanics of spinal osteoporosis: subregional bone mineral density and physiological loading [Ph.D. thesis], School of Physiotherapy and Department of Medicine, The University of Melbourne, Melbourne, Australia, 2006.
  55. R. C. Rupich, M. G. Griffin, R. Pacifici, L. V. Avioli, and N. Susman, “Lateral dual-energy radiography: artifact error from rib and pelvic bone,” Journal of Bone and Mineral Research, vol. 7, no. 1, pp. 97–101, 1992. View at Google Scholar · View at Scopus
  56. A. M. Briggs, J. D. Wark, A. M. Greig et al., “Subregional bone mineral density measurement in the lumbar spine using DXA: potential for the application to osteoporosis and vertebral fractures,” in Osteoporosis: Etiology, Diagnosis and Treatment, B. E. Mattingly and A. C. Pillare, Eds., pp. 1–50, Nova Publishers, New York, NY, USA, 2009. View at Google Scholar
  57. M. A. Adams, “Basic science of spinal degeneration,” Surgery, vol. 30, pp. 347–350, 2012. View at Google Scholar
  58. J. Homminga, R. Aquarius, V. E. Bulsink et al., “Can vertebral density changes be explained by intervertebral disc degeneration?” Medical Engineering & Physics, vol. 34, pp. 453–458, 2012. View at Google Scholar
  59. M. A. Adams, P. Pollintine, J. H. Tobias, G. K. Wakley, and P. Dolan, “Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine,” Journal of Bone and Mineral Research, vol. 21, no. 9, pp. 1409–1416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. J. P. Grant, T. R. Oxland, and M. F. Dvorak, “Mapping the structural properties of the lumbosacral vertebral endplates,” Spine, vol. 26, no. 8, pp. 889–896, 2001. View at Publisher · View at Google Scholar · View at Scopus