Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013 (2013), Article ID 801743, 28 pages
http://dx.doi.org/10.1155/2013/801743
Review Article

The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue

1Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
2Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
3Department of Nursing, Kyorin University, Faculty of Health Science, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
4Department of Respiratory Medicine, Hachioji Medical Center, Tokyo Medical University, 1163 Tatemachi, Hachioji, Tokyo 193-0998, Japan
5Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
6Third Department of Internal Medicine, Kyorin University, School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
7Department of Sports Biochemistry, Faculty of Health and Sport Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan

Received 6 July 2013; Revised 7 October 2013; Accepted 10 October 2013

Academic Editor: Eun Seok Kang

Copyright © 2013 Takuya Sakurai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Prentice, “The emerging epidemic of obesity in developing countries,” International Journal of Epidemiology, vol. 35, no. 1, pp. 93–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sassi, Obesity and the Economics of Prevention: Fit Not Fat, OECD Publishing, Paris, France, 2010.
  3. M. Cecchini, F. Sassi, J. A. Lauer, Y. Y. Lee, V. Guajardo-Barron, and D. Chisholm, “Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness,” The Lancet, vol. 376, no. 9754, pp. 1775–1784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Bassuk and J. E. Manson, “Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease,” Journal of Applied Physiology, vol. 99, no. 3, pp. 1193–1204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Lamonte, S. N. Blair, and T. S. Church, “Physical activity and diabetes prevention,” Journal of Applied Physiology, vol. 99, no. 3, pp. 1205–1213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Helmrich, D. R. Ragland, R. W. Leung, and R. S. Paffenbarger Jr., “Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 325, no. 3, pp. 147–152, 1991. View at Google Scholar · View at Scopus
  7. J. E. Manson, D. M. Nathan, A. S. Krolewski, M. J. Stampfer, W. C. Willett, and C. H. Hennekens, “A prospective study of exercise and incidence of diabetes among US male physicians,” The Journal of the American Medical Association, vol. 268, no. 1, pp. 63–67, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Manson, E. B. Rimm, M. J. Stampfer et al., “Physical activity and incidence of non-insulin-dependent diabetes mellitus in women,” The Lancet, vol. 338, no. 8770, pp. 774–778, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tilg and A. R. Moschen, “Adipocytokines: mediators linking adipose tissue, inflammation and immunity,” Nature Reviews Immunology, vol. 6, no. 10, pp. 772–783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Rabe, M. Lehrke, K. G. Parhofer, and U. C. Broedl, “Adipokines and insulin resistance,” Molecular Medicine, vol. 14, no. 11-12, pp. 741–751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. N. Lumeng and A. R. Saltiel, “Inflammatory links between obesity and metabolic disease,” The Journal of Clinical Investigation, vol. 121, no. 6, pp. 2111–2117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. Horowitz, “Fatty acid mobilization from adipose tissue during exercise,” Trends in Endocrinology and Metabolism, vol. 14, no. 8, pp. 386–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Fantuzzi, “Adipose tissue, adipokines, and inflammation,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 911–919, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Halaas, K. S. Gajiwala, M. Maffei et al., “Weight-reducing effects of the plasma protein encoded by the obese gene,” Science, vol. 269, no. 5223, pp. 543–546, 1995. View at Google Scholar · View at Scopus
  18. D. L. Morris and L. Rui, “Recent advances in understanding leptin signaling and leptin resistance,” American Journal of Physiology: Endocrinology and Metabolism, vol. 297, no. 6, pp. E1247–E1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Oswal and G. Yeo, “Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity,” Obesity, vol. 18, no. 2, pp. 221–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Lönnqvist, P. Arner, L. Nordfors, and M. Schalling, “Overexpression of the obese (ob) gene in adipose tissue of human obese subjects,” Nature Medicine, vol. 1, no. 9, pp. 950–953, 1995. View at Google Scholar · View at Scopus
  22. M. Mapfei, J. Halaas, E. Ravussin et al., “Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects,” Nature Medicine, vol. 1, no. 11, pp. 1155–1161, 1995. View at Google Scholar · View at Scopus
  23. J. J. Zachwieja, S. L. Hendry, S. R. Smith, and R. B. S. Harris, “Voluntary wheel running decreases adipose tissue mass and expression of leptin inRNA in Osborne-Mendel rats,” Diabetes, vol. 46, no. 7, pp. 1159–1166, 1997. View at Google Scholar · View at Scopus
  24. K. S. C. Gollisch, J. Brandauer, N. Jessen et al., “Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats,” American Journal of Physiology: Endocrinology and Metabolism, vol. 297, no. 7, pp. E495–E504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Bradley, J. Y. Jeon, F.-F. Liu, and E. Maratos-Flier, “Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice,” American Journal of Physiology: Endocrinology and Metabolism, vol. 295, no. 3, pp. E586–E594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. J. Vieira, R. J. Valentine, K. R. Wilund, N. Antao, T. Baynard, and J. A. Woods, “Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice,” American Journal of Physiology: Endocrinology and Metabolism, vol. 296, no. 5, pp. E1164–E1171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Sakurai, T. Izawa, T. Kizaki et al., “Exercise training decreases expression of inflammation-related adipokines through reduction of oxidative stress in rat white adipose tissue,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 605–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Sakurai, M. Takei, J. Ogasawara et al., “Exercise training enhances tumor necrosis factor-α-induced expressions of anti-apoptotic genes without alterations in caspase-3 activity in rat epididymal adipocytes,” Japanese Journal of Physiology, vol. 55, no. 3, pp. 181–189, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. F. S. Lira, J. C. Rosa, A. S. Yamashita, C. H. Koyama, M. L. Batista Jr., and M. Seelaender, “Endurance training induces depot-specific changes in IL-10/TNF-α ratio in rat adipose tissue,” Cytokine, vol. 45, no. 2, pp. 80–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Nara, T. Kanda, S. Tsukui et al., “Running exercise increases tumor necrosis factor-α secreting from mesenteric fat in insulin-resistant rats,” Life Sciences, vol. 65, no. 3, pp. 237–244, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Miyazaki, T. Izawa, J.-E. Ogasawara et al., “Effect of exercise training on adipocyte-size-dependent expression of leptin and adiponectin,” Life Sciences, vol. 86, no. 17-18, pp. 691–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Christiansen, S. K. Paulsen, J. M. Bruun, S. B. Pedersen, and B. Richelsen, “Exercise training versus diet-induced weight-loss on metabolic risk factors and inflammatory markers in obese subjects: a 12-week randomized intervention study,” American Journal of Physiology: Endocrinology and Metabolism, vol. 298, no. 4, pp. E824–E831, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Bruun, J. W. Helge, B. Richelsen, and B. Stallknecht, “Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects,” American Journal of Physiology: Endocrinology and Metabolism, vol. 290, no. 5, pp. E961–E967, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. R. Berggren, M. W. Hulver, and J. A. Houmard, “Fat as an endocrine organ: influence of exercise,” Journal of Applied Physiology, vol. 99, no. 2, pp. 757–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. A. Houmard, J. H. Cox, P. S. MacLean, and H. A. Barakat, “Effect of short-term exercise training on leptin and insulin action,” Metabolism, vol. 49, no. 7, pp. 858–861, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Halle, A. Berg, U. Garwers, D. Grathwohl, W. Knisel, and J. Keul, “Concurrent reductions of serum leptin and lipids during weight loss in obese men with type II diabetes,” American Journal of Physiology: Endocrinology and Metabolism, vol. 277, no. 2, pp. E277–E282, 1999. View at Google Scholar · View at Scopus
  37. T. Ishii, T. Yamakita, K. Yamagami et al., “Effect of exercise training on serum leptin levels in type 2 diabetic patients,” Metabolism, vol. 50, no. 10, pp. 1136–1140, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Boudou, E. Sobngwi, F. Mauvais-Jarvis, P. Vexiau, and J.-F. Gautier, “Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men,” European Journal of Endocrinology, vol. 149, no. 5, pp. 421–424, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. R. R. Kraemer, G. R. Kraemer, E. O. Acevedo et al., “Effects of aerobic exercise an serum leptin levels in obese women,” European Journal of Applied Physiology and Occupational Physiology, vol. 80, no. 2, pp. 154–158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. M. S. Hickey, J. A. Houmard, R. V. Considine et al., “Gender-dependent effects of exercise training on serum leptin levels in humans,” American Journal of Physiology: Endocrinology and Metabolism, vol. 272, no. 4, pp. E562–E566, 1997. View at Google Scholar · View at Scopus
  41. O. Ozcelik, H. Celik, A. Ayar, S. Serhatlioglu, and H. Kelestimur, “Investigation of the influence of training status on the relationship between the acute exercise and serum leptin levels in obese females,” Neuroendocrinology Letters, vol. 25, no. 5, pp. 381–385, 2004. View at Google Scholar · View at Scopus
  42. J. Polak, E. Klimcakova, C. Moro et al., “Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor α in obese women,” Metabolism, vol. 55, no. 10, pp. 1375–1381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Okazaki, E. Himeno, H. Nanri, H. Ogata, and M. Ikeda, “Effects of mild aerobic exercise and a mild hypocaloric diet on plasma leptin in sedentary women,” Clinical and Experimental Pharmacology and Physiology, vol. 26, no. 5-6, pp. 415–420, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Pérusse, G. Collier, J. Gagnon et al., “Acute and chronic effects of exercise on leptin levels in humans,” Journal of Applied Physiology, vol. 83, no. 1, pp. 5–10, 1997. View at Google Scholar
  45. T. Kondo, I. Kobayashi, and M. Murakami, “Effect of exercise on circulating adipokine levels in obese young women,” Endocrine Journal, vol. 53, no. 2, pp. 189–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. Reseland, S. A. Anderssen, K. Solvoll et al., “Effect of long-term changes in diet and exercise on plasma leptin concentrations,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 240–245, 2001. View at Google Scholar · View at Scopus
  47. N. Miyatake, K. Takahashi, J. Wada et al., “Changes in serum leptin concentrations in overweight Japanese men after exercise,” Diabetes, Obesity and Metabolism, vol. 6, no. 5, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. J. Hsieh and P. W. Wang, “Effectiveness of weight loss in the elderly with type 2 diabetes mellitus,” Journal of Endocrinological Investigation, vol. 28, no. 11, pp. 973–977, 2005. View at Google Scholar · View at Scopus
  49. A. S. Ryan, R. E. Pratley, D. Elahi, and A. P. Goldberg, “Changes in plasma leptin and insulin action with resistive training in postmenopausal women,” International Journal of Obesity, vol. 24, no. 1, pp. 27–32, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. I. G. Fatouros, S. Tournis, D. Leontsini et al., “Leptin and adiponectin responses in overweight inactive elderly following resistance training and detraining are intensity related,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 11, pp. 5970–5977, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Qi and P. H. Pekala, “Tumor necrosis factor-α-induced insulin resistance in adipocytes,” Proceedings of the Society for Experimental Biology and Medicine, vol. 223, no. 2, pp. 128–135, 2000. View at Google Scholar · View at Scopus
  52. W. P. Cawthorn and J. K. Sethi, “TNF-α and adipocyte biology,” FEBS Letters, vol. 582, no. 1, pp. 117–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. G. S. Hotamisligil, P. Arner, J. F. Caro, R. L. Atkinson, and B. M. Spiegelman, “Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance,” The Journal of Clinical Investigation, vol. 95, no. 5, pp. 2409–2415, 1995. View at Google Scholar · View at Scopus
  54. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  55. P. A. Kern, M. Saghizadeh, J. M. Ong, R. J. Bosch, R. Deem, and R. B. Simsolo, “The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase,” The Journal of Clinical Investigation, vol. 95, no. 5, pp. 2111–2119, 1995. View at Google Scholar · View at Scopus
  56. G. S. Hotamisligil, A. Budavari, D. Murray, and B. M. Spiegelman, “Reduced tyrosine kinase activity of the insulin receptor in obesity- diabetes. Central role of tumor necrosis factor-α,” The Journal of Clinical Investigation, vol. 94, no. 4, pp. 1543–1549, 1994. View at Google Scholar · View at Scopus
  57. G. S. Hotamisligil, D. L. Murray, L. N. Choy, and B. M. Spiegelman, “Tumor necrosis factor α inhibits signaling from the insulin receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 4854–4858, 1994. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Maeda, M. Takahashi, T. Funahashi et al., “PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein,” Diabetes, vol. 50, no. 9, pp. 2094–2099, 2001. View at Google Scholar · View at Scopus
  59. A. Katsuki, Y. Sumida, S. Murashima et al., “Serum levels of tumor necrosis factor-α are increased in obese patients with noninsulin-dependent diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, pp. 859–862, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Stŗczkowski, I. Kowalska, S. Dzienis-Stŗczkowska et al., “Changes in tumor necrosis factor-α system and insulin sensitivity during an exercise training program in obese women with normal and impaired flucose tolerance,” European Journal of Endocrinology, vol. 145, no. 3, pp. 273–280, 2001. View at Google Scholar · View at Scopus
  61. L. Horne, G. Bell, B. Fisher, S. Warren, and A. Janowska-Wieczorek, “Interaction between cortisol and tumour necrosis factor with concurrent resistance and endurance training,” Clinical Journal of Sport Medicine, vol. 7, no. 4, pp. 247–251, 1997. View at Google Scholar · View at Scopus
  62. M. L. Kohut, D. A. McCann, D. W. Russell et al., “Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults,” Brain, Behavior, and Immunity, vol. 20, no. 3, pp. 201–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. B. J. Nicklas, W. Ambrosius, S. P. Messier et al., “Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial,” American Journal of Clinical Nutrition, vol. 79, no. 4, pp. 544–551, 2004. View at Google Scholar · View at Scopus
  64. M. Trøseid, K. T. Lappegård, T. Claud et al., “Exercise reduces plasma levels of the chemokines MCP-1 and IL-8 in subjects with the metabolic syndrome,” European Heart Journal, vol. 25, no. 4, pp. 349–355, 2004. View at Google Scholar
  65. M. Blüher, J. W. Bullen Jr., J. H. Lee et al., “Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: associations with metabolic parameters and insulin resistance and regulation by physical training,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 2310–2316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Oberbach, A. Tönjes, N. Klöting et al., “Effect of a 4 week physical training program on plasma concentrations of inflammatory markers in patients with abnormal glucose tolerance,” European Journal of Endocrinology, vol. 154, no. 4, pp. 577–585, 2006. View at Google Scholar
  67. V. B. O'Leary, C. M. Marchetti, R. K. Krishnan, B. P. Stetzer, F. Gonzalez, and J. P. Kirwan, “Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat,” Journal of Applied Physiology, vol. 100, no. 5, pp. 1584–1589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. G. P. Nassis, K. Papantakou, K. Skenderi et al., “Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls,” Metabolism, vol. 54, no. 11, pp. 1472–1479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. M. W. Hulver, D. Zheng, C. J. Tanner et al., “Adiponectin is not altered with exercise training despite enhanced insulin action,” American Journal of Physiology: Endocrinology and Metabolism, vol. 283, no. 4, pp. E861–E865, 2002. View at Google Scholar · View at Scopus
  70. N. Kamei, K. Tobe, R. Suzuki et al., “Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance,” The Journal of Biological Chemistry, vol. 281, no. 36, pp. 26602–26614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe, “Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome,” The Journal of Clinical Investigation, vol. 116, no. 7, pp. 1784–1792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Kadowaki and T. Yamauchi, “Adiponectin and adiponectin receptors,” Endocrine Reviews, vol. 26, no. 3, pp. 439–451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. A. M. Wolf, D. Wolf, H. Rumpold, B. Enrich, and H. Tilg, “Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes,” Biochemical and Biophysical Research Communications, vol. 323, no. 2, pp. 630–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Hu, P. Liang, and B. M. Spiegelman, “AdipoQ is a novel adipose-specific gene dysregulated in obesity,” The Journal of Biological Chemistry, vol. 271, no. 18, pp. 10697–10703, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Kishimoto, “Interleukin-6: from basic science to medicine—40 years in immunology,” Annual Review of Immunology, vol. 23, pp. 1–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1154–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. J. R. Berggren, M. W. Hulver, and J. A. Houmard, “Fat as an endocrine organ: influence of exercise,” Journal of Applied Physiology, vol. 99, no. 2, pp. 757–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Eder, N. Baffy, A. Falus, and A. K. Fulop, “The major inflammatory mediator interleukin-6 and obesity,” Inflammation Research, vol. 58, no. 11, pp. 727–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. C. P. Fischer, “Interleukin-6 in acute exercise and training: what is the biological relevance?” Exercise Immunology Review, vol. 12, pp. 6–33, 2006. View at Google Scholar · View at Scopus
  82. K.-Y. Guo, P. Halo, R. L. Leibel, and Y. Zhang, “Effects of obesity on the relationship of leptin mRNA expression and adipocyte size in anatomically distinct fat depots in mice,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 287, no. 1, pp. R112–R119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Skurk, C. Alberti-Huber, C. Herder, and H. Hauner, “Relationship between adipocyte size and adipokine expression and secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1023–1033, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Zhang, K.-Y. Guo, P. A. Diaz, M. Heo, and R. L. Leibel, “Determinants of leptin gene expression in fat depots of lean mice,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 282, no. 1, pp. R226–R234, 2002. View at Google Scholar · View at Scopus
  85. M.-L. Delporte, T. Funahashi, M. Takahashi, Y. Matsuzawa, and S. M. Brichard, “Pre- and post-translational negative effect of β-adrenoceptor agonists on adiponectin secretion: in vitro and in vivo studies,” Biochemical Journal, vol. 367, no. 3, pp. 677–685, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Fu, K. Isobe, Q. Zeng, K. Suzukawa, K. Takekoshi, and Y. Kawakami, “β-adrenoceptor agonists downregulate adiponectin, but upregulate adiponectin receptor 2 and tumor necrosis factor-α expression in adipocytes,” European Journal of Pharmacology, vol. 569, no. 1-2, pp. 155–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Fu, K. Isobe, Q. Zeng, K. Suzukawa, K. Takekoshi, and Y. Kawakami, “The effects of β3-adrenoceptor agonist CL-316,243 on adiponectin, adiponectin receptors and tumor necrosis factor-α expressions in adipose tissues of obese diabetic KKAy mice,” European Journal of Pharmacology, vol. 584, no. 1, pp. 202–206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” The Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Ito, T. Suganami, Y. Miyamoto et al., “Role of MAPK phosphatase-1 in the induction of monocyte chemoattractant protein-1 during the course of adipocyte hypertrophy,” The Journal of Biological Chemistry, vol. 282, no. 35, pp. 25445–25452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. C. E. Cooper, N. B. Vollaard, T. Choueiri, and M. T. Wilson, “Exercise, free radicals and oxidative stress,” Biochemical Society Transactions, vol. 30, no. 2, pp. 280–285, 2002. View at Google Scholar · View at Scopus
  91. N. Hosogai, A. Fukuhara, K. Oshima et al., “Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation,” Diabetes, vol. 56, no. 4, pp. 901–911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Ye, Z. Gao, J. Yin, and Q. He, “Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice,” American Journal of Physiology: Endocrinology and Metabolism, vol. 293, no. 4, pp. E1118–E1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. B. Stallknecht, “Influence of physical training on adipose tissue metabolism—with special focus on effects of insulin and epinephrine,” Danish Medical Bulletin, vol. 51, no. 1, pp. 1–33, 2004. View at Google Scholar · View at Scopus
  94. D. Hatano, J. Ogasawara, S. Endoh et al., “Effect of exercise training on the density of endothelial cells in the white adipose tissue of rats,” Scandinavian Journal of Medicine and Science in Sports, vol. 21, no. 6, pp. e115–e121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. K. L. English and D. Paddon-Jones, “Protecting muscle mass and function in older adults during bed rest,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 1, pp. 34–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. B, T. Wall, and L. J. van Loon, “Nutritional strategies to attenuate muscle disuse atrophy,” Nutrition Reviews, vol. 71, no. 4, pp. 195–208, 2013. View at Google Scholar
  97. V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. Z. Yan, M. Okutsu, Y. N. Akhtar, and V. A. Lira, “Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle,” Journal of Applied Physiology, vol. 110, no. 1, pp. 264–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. J. O. Holloszy, “Exercise-induced increase in muscle insulin sensitivity,” Journal of Applied Physiology, vol. 99, no. 1, pp. 338–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. E. O. Ojuka, V. Goyaram, and J. A. Smith, “The role of CaMKII in regulating GLUT4 expression in skeletal muscle,” American Journal of Physiology: Endocrinology and Metabolism, vol. 303, no. 3, pp. E322–E331, 2012. View at Google Scholar
  101. D. G. Hardie, “AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function,” Genes and Development, vol. 25, no. 18, pp. 1895–1908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. D. G. Hardie, “AMPK: a key regulator of energy balance in the single cell and the whole organism,” International Journal of Obesity, vol. 32, no. 4, pp. S7–S12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Vavvas, A. Apazidis, A. K. Saha et al., “Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP- activated kinase in skeletal muscle,” The Journal of Biological Chemistry, vol. 272, no. 20, pp. 13255–13261, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. W. W. Winder and D. G. Hardie, “Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise,” American Journal of Physiology: Endocrinology and Metabolism, vol. 270, no. 2, pp. E299–E304, 1996. View at Google Scholar · View at Scopus
  105. G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, “AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle,” American Journal of Physiology: Endocrinology and Metabolism, vol. 273, no. 6, pp. E1107–E1112, 1997. View at Google Scholar · View at Scopus
  106. T. Hayashi, M. F. Hirshman, E. J. Kurth, W. W. Winder, and L. J. Goodyear, “Evidence for 5'AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport,” Diabetes, vol. 47, no. 8, pp. 1369–1373, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. E. J. Kurth-Kraczek, M. F. Hirshman, L. J. Goodyear, and W. W. Winder, “5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle,” Diabetes, vol. 48, no. 8, pp. 1667–1671, 1999. View at Publisher · View at Google Scholar · View at Scopus
  108. H. M. O'Neill, “AMPK and exercise: glucose uptake and insulin sensitivity,” Diabetes & Metabolism Journal, vol. 37, no. 1, pp. 1–21, 2013. View at Google Scholar
  109. A. Bonen, X.-X. Han, D. D. J. Habets, M. Febbraio, J. F. C. Glatz, and J. J. F. P. Luiken, “A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism,” American Journal of Physiology: Endocrinology and Metabolism, vol. 292, no. 6, pp. E1740–E1749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Bergeron, J. M. Ren, K. S. Cadman et al., “Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis,” American Journal of Physiology: Endocrinology and Metabolism, vol. 281, no. 6, pp. E1340–E1346, 2001. View at Google Scholar · View at Scopus
  111. W. W. Winder, B. F. Holmes, D. S. Rubink, E. B. Jensen, M. Chen, and J. O. Holloszy, “Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle,” Journal of Applied Physiology, vol. 88, no. 6, pp. 2219–2226, 2000. View at Google Scholar · View at Scopus
  112. S. B. Jørgensen, J. F. P. Wojtaszewski, B. Viollet et al., “Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle,” FASEB Journal, vol. 19, no. 9, pp. 1146–1148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. H. Liang and W. F. Ward, “PGC-1α: a key regulator of energy metabolism,” American Journal of Physiology: Advances in Physiology Education, vol. 30, no. 4, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Olesen, K. Kiilerich, and H. Pilegaard, “PGC-1α-mediated adaptations in skeletal muscle,” Pflügers Archiv, vol. 460, no. 1, pp. 153–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. J. R. Speakman and C. Selman, “Physical activity and resting metabolic rate,” Proceedings of the Nutrition Society, vol. 62, no. 3, pp. 621–634, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Iwabu, T. Yamauchi, M. Okada-Iwabu et al., “Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1,” Nature, vol. 464, no. 7293, pp. 1313–1319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. L. D. Høeg, K. A. Sjøberg, A. M. Lundsgaard et al., “Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women,” Journal of Applied Physiology, vol. 114, no. 5, pp. 592–601, 2013. View at Google Scholar