Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 828532, 9 pages
http://dx.doi.org/10.1155/2013/828532
Review Article

Endocrine-Disrupting Chemicals: Some Actions of POPs on Female Reproduction

Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland

Received 7 January 2013; Accepted 26 April 2013

Academic Editor: Radmila Kovacevic

Copyright © 2013 Ewa L. Gregoraszczuk and Anna Ptak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Pocar, T. A. L. Brevini, B. Fischer, and F. Gandolfi, “The impact of endocrine disruptors on oocyte competence,” Reproduction, vol. 125, no. 3, pp. 313–325, 2003. View at Google Scholar · View at Scopus
  2. C. Campagna, M. A. Sirard, P. Ayotte, and J. L. Bailey, “Impaired maturation, fertilization, and embryonic development of porcine oocytes following exposure to an environmentally relevant organochlorine mixture,” Biology of Reproduction, vol. 65, no. 2, pp. 554–560, 2001. View at Google Scholar · View at Scopus
  3. P. Pocar, T. A. L. Brevini, F. Perazzoli, F. Cillo, S. Modina, and F. Gandolfi, “Cellular and molecular mechanisms mediating the effects of polychlorinated biphenyls on oocyte developmental competence in Cattle,” Molecular Reproduction and Development, vol. 60, no. 4, pp. 535–541, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Campagna, C. Guillemette, R. Paradis, M. A. Sirard, P. Ayotte, and J. L. Bailey, “An environmentally relevant organochlorine mixture impairs sperm function and embryo development in the porcine model,” Biology of Reproduction, vol. 67, no. 1, pp. 80–87, 2002. View at Google Scholar · View at Scopus
  5. B. Eskenazi, M. Warner, P. Mocarelli et al., “Serum dioxin concentrations and menstrual cycle characteristics,” American Journal of Epidemiology, vol. 156, no. 4, pp. 383–392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Gao, B. K. Petroff, K. K. Rozman, and P. F. Terranova, “Gonadotropin-releasing hormone (GnRH) partially reverses the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on ovulation in the immature gonadotropin-treated rat,” Toxicology, vol. 147, no. 1, pp. 15–22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Hirakawa, T. Minegishi, K. Abe et al., “Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of follicle-stimulating hormone receptors during cell differentiation in cultured granulosa cells,” Endocrinology, vol. 141, no. 4, pp. 1470–1476, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Gore, “Organochlorine pesticides directly regulate gonadotropin-releasing hormone gene expression and biosynthesis in the GT1-7 hypothalamic cell line,” Molecular and Cellular Endocrinology, vol. 192, no. 1-2, pp. 157–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. E. L. Gregoraszczuk, E. Zabielny, and D. Ochwat, “Aryl hydrocarbon receptor (AhR)-linked inhibition of luteal cell progesterone secretion in 2,3,7,8-tetrachlorodibenzo-p-dioxin treated cells,” Journal of Physiology and Pharmacology, vol. 52, no. 2, pp. 303–311, 2001. View at Google Scholar · View at Scopus
  10. X. Gao, P. F. Terranova, and K. K. Rozman, “Effects of polychlorinated dibenzofurans, biphenyls, and their mixture with dibenzo-p-dioxins on ovulation in the gonadotropin-primed immature rat: support for the toxic equivalency concept,” Toxicology and Applied Pharmacology, vol. 163, no. 2, pp. 115–124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Okazaki, S. Okazaki, S. Nishimura et al., “A repeated 28-day oral dose toxicity study of methoxychlor in rats, based on the “enhanced OECD test guideline 407” for screening endocrine-disrupting chemicals,” Archives of Toxicology, vol. 75, no. 9, pp. 513–521, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. E. L. Gregoraszczuk, A. Grochowalski, R. Chrzaszcz, and M. Wegiel, “Congener-specific accumulation of polychlorinated biphenyls in ovarian follicular wall follows repeated exposure to PCB 126 and PCB 153. Comparison of tissue levels of PCB and biological changes,” Chemosphere, vol. 50, no. 4, pp. 481–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Wojtowicz, E. Ropstad, and E. L. Gregoraszczuk, “Estrous cycle-dependent changes in steroid secretion by pig ovarian cells exposed in vitro to polychlorinated biphenyl (PCB 153),” Endocrine Regulations, vol. 35, no. 4, pp. 223–228, 2001. View at Google Scholar · View at Scopus
  14. E. L. Gregoraszczuk, M. Sowa, M. Kajta, A. Ptak, and A. Wójtowicz, “Effect of PCB 126 and PCB 153 on incidence of apoptosis in cultured theca and granulosa cells collected from small, medium and large preovulatory follicles,” Reproductive Toxicology, vol. 17, no. 4, pp. 465–471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. L. Gregoraszczuk, K. Milczarek, A. K. Wójtowicz, V. Berg, J. U. Skaare, and E. Ropstad, “Steroid secretion following exposure of ovarian follicular cells to three different natural mixtures of persistent organic pollutants (POPs),” Reproductive Toxicology, vol. 25, no. 1, pp. 58–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. BSEF, “Bromine science and enviromental forum,” 2007, http://www.bsef.com/.
  17. K. Akutsu and S. Hori, “Polybrominated diphenyl ether flame retardants in foodstuffs and human milk,” Shokuhin Eiseigaku Zasshi, vol. 45, no. 4, pp. 175–183, 2004. View at Google Scholar · View at Scopus
  18. I. A. T. M. Meerts, R. J. Letcher, S. Hoving et al., “In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds,” Environmental Health Perspectives, vol. 109, no. 4, pp. 399–407, 2001. View at Google Scholar · View at Scopus
  19. A. Sjodin, D. G. Patterson Jr., and A. Bergman, “A review on human exposure to brominated flame retardants—particularly polybrominated diphenyl ethers,” Environment International, vol. 29, no. 6, pp. 829–839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Zhou, M. M. Taylor, M. J. De Vito, and K. M. Crofton, “Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption,” Toxicological Sciences, vol. 66, no. 1, pp. 105–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. E. Stoker, S. C. Laws, K. M. Crofton, J. M. Hedge, J. M. Ferrell, and R. L. Cooper, “Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols,” Toxicological Sciences, vol. 78, no. 1, pp. 144–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Karpeta and E. L. Gregoraszczuk, “Mixture of dominant PBDE congeners (BDE-47, -99, -100 and -209) at levels noted in human blood dramatically enhances progesterone secretion by ovarian follicles,” Endocrine Regulations, vol. 44, no. 2, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Karpeta, A. Rak-Mardyła, J. Jerzak, and E. L. Gregoraszczuk, “Congener-specific action of PBDEs on steroid secretion, CYP17, 17β-HSD and CYP19 activity and protein expression in porcine ovarian follicles,” Toxicology Letters, vol. 206, pp. 258–263, 2011. View at Google Scholar
  24. A. Karpeta, K. Warzecha, J. Jerzak, A. Ptak, and E. L. Gregoraszczuk, “Activation of the enzymes of phase I, (CYP2B1/2) and phase II, (SULT1A and COMT) metabolism by 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE47) in the pig ovary,” Reproductive Toxicology, vol. 34, pp. 436–442, 2012. View at Google Scholar
  25. A. Karpeta, J. Barc, and A. Ptak, “Gregoraszczuk EL. The 2, 2′, 4, 4′-tetrabromodiphenyl ether hydroxylated metabolites 5-OH-BDE-47 and 6-OH-BDE-47 stimulate estradiol secretion in the ovary by activating aromatase expression,” Toxicology, vol. 305, pp. 65–70, 2013. View at Google Scholar
  26. J. Falandysz, “Chloronaphthalenes as food-chain contaminants: a review,” Food Additives and Contaminants, vol. 21, pp. 995–1014, 2003. View at Google Scholar
  27. A. L. Blankenship, K. Kannan, S. A. Villalobos et al., “Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses,” Environmental Science and Technology, vol. 34, no. 15, pp. 3153–3158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. L. Villeneuve, K. Kannan, J. S. Khim et al., “Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays,” Archives of Environmental Contamination and Toxicology, vol. 39, no. 3, pp. 273–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Ł. Gregoraszczuk, J. Jerzak, A. Rak-Mardyła, and J. Falandysz, “Halowax 1051 affects steroidogenesis, 17β-hydroxysteroid dehydrogenase (17β-HSD) and cytochrome P450arom (CYP19) activity, and protein expression in porcine ovarian follicles,” Reproductive Toxicology, vol. 32, pp. 379–384, 2011. View at Google Scholar
  30. J. Barc, A. Karpeta, and E. L. Gregoraszczuk, “Action of halowax 1051 on enzymes of phase I, (CYP1A1) and phase II, (SULT1A and COMT) metabolism in the pig ovary,” International Journal of Endocrinology, vol. 2013, Article ID 590261, 7 pages, 2013. View at Publisher · View at Google Scholar
  31. J. F. Jarrell, A. Gocmen, D. Akyol, and R. Brant, “Hexachlorobenzene exposure and the proportion of male births in Turkey 1935–1990,” Reproductive Toxicology, vol. 16, no. 1, pp. 65–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Khanjani and M. R. Sim, “Reproductive outcomes of maternal contamination with cyclodiene insecticides, hexachlorobenzene and β-benzene hexachloride,” Science of the Total Environment, vol. 368, no. 2-3, pp. 557–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Alvarez, A. Randi, P. Alvarez et al., “Reproductive effects of hexachlorobenzene in female rats,” Journal of Applied Toxicology, vol. 20, pp. 81–87, 2000. View at Google Scholar
  34. W. G. Foster, J. A. Pentick, A. McMahon, and P. R. Lecavalier, “Ovarian toxicity of hexachlorobenzene (HCB) in the superovulated female rat,” Journal of Biochemical Toxicology, vol. 7, no. 1, pp. 1–4, 1992. View at Google Scholar · View at Scopus
  35. E. Ł. Gregoraszczuk, A. Ptak, A. Rak-Mardyła, and J. Falandysz, “Differential accumulation of HCBz and PeCBz in porcine ovarian follicles and their opposing actions on steroid secretion and CYP11, CYP17, 17β-HSD and CYP19 protein expression. A tissue culture approach,” Reproductive Toxicology, vol. 31, no. 4, pp. 494–499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. E. V. Younglai, W. G. Foster, E. G. Hughes, K. Trim, and J. F. Jarrell, “Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization,” Archives of Environmental Contamination and Toxicology, vol. 43, no. 1, pp. 121–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Ramamoorthy, C. Vyhlidal, F. Wang et al., “Additive estrogenic activities of a binary mixture of 2′,4′,6′-Trichloro- and 2′,3′,4′,5′-tetrachloro-4-biphenylol,” Toxicology and Applied Pharmacology, vol. 147, no. 1, pp. 93–100, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. K. C. Donnelly, L. D. Claxton, H. J. Huebner, and J. L. Capizzi, “Mutagenic interactions of model chemical mixtures,” Chemosphere, vol. 37, no. 7, pp. 1253–1261, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. S. A. Andric, T. S. Kostic, S. S. Stojilkovic, and R. Z. Kovacevic, “Inhibition of rat testicular androgenesis by a polychlorinated biphenyl mixture Aroclor 1248,” Biology of Reproduction, vol. 62, no. 6, pp. 1882–1888, 2000. View at Google Scholar · View at Scopus
  40. E. J. Calabrese and L. A. Baldwin, “Hormesis: U-shaped dose responses and their centrality in toxicology,” Trends in Pharmacological Sciences, vol. 22, no. 6, pp. 285–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. D. O. Carpenter, K. Arcaro, and D. C. Spink, “Understanding the human health effects of chemical mixtures,” Environmental Health Perspectives, vol. 110, no. 1, pp. 25–42, 2002. View at Google Scholar · View at Scopus
  42. E. L. Gregoraszczuk, A. Ptak, M. Karniewska, and E. Ropstad, “Action of defined mixtures of PCBs, p,p′-DDT and its metabolite p,p′-DDE, on co-culture of porcine theca and granulosa cells: steroid secretion, cell proliferation and apoptosis,” Reproductive Toxicology, vol. 26, no. 2, pp. 170–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Ł. Gregoraszczuk, A. Rak, K. Kawalec, and E. Ropstad, “Steroid secretion following exposure of ovarian follicular cells to single congeners and defined mixture of polybrominateddibenzoethers (PBDEs), p,p′-DDT and its metabolite p,p′-DDE,” Toxicology Letters, vol. 178, no. 2, pp. 103–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. L. Gregoraszczuk, A. Ptak, J. U. Skaare et al., “Mechanisms of action of two different natural mixtures of persistent organic pollutants (POPs) in ovarian follicles,” Xenobiotica, vol. 39, no. 1, pp. 80–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice et al., “Endocrine-disrupting chemicals: an endocrine society scientific statement,” Endocrine Reviews, vol. 30, no. 4, pp. 293–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Den Hond, G. Schoeters, W. G. Sippell et al., “Endocrine disrupters and human puberty,” International Journal of Andrology, vol. 29, no. 1, pp. 264–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Colón, D. Caro, C. J. Bourdony, and O. Rosario, “Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development,” Environmental Health Perspectives, vol. 108, no. 9, pp. 895–900, 2000. View at Google Scholar · View at Scopus
  48. M. Krstevska-Konstantinova, C. Charlier, M. Craen et al., “Sexual precocity after immigration from developing countries to Belgium: evidence of previous exposure to organochlorine pesticides,” Human Reproduction, vol. 16, no. 5, pp. 1020–1026, 2001. View at Google Scholar · View at Scopus
  49. T. Takeuchi, O. Tsutsumi, Y. Ikezuki, Y. Takai, and Y. Taketani, “Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction,” Endocrine Journal, vol. 51, no. 2, pp. 165–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Takeuchi, O. Tsutsumi, Y. Ikezuki et al., “Elevated serum bisphenol A levels under hyperandrogenic conditions may be caused by decreased UDP-glucuronosyltransferase activity,” Endocrine Journal, vol. 53, no. 4, pp. 485–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Sinha and N. Kuruba, “Premature ovarian failure,” Journal of Obstetrics and Gynaecology, vol. 27, no. 1, pp. 16–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. P. A. Hunt, K. E. Koehler, M. Susiarjo et al., “Bisphenol a exposure causes meiotic aneuploidy in the female mouse,” Current Biology, vol. 13, no. 7, pp. 546–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Susiarjo, T. J. Hassold, E. Freeman, and P. A. Hunt, “Bisphenol A exposure in utero disrupts early oogenesis in the mouse,” PLoS Genetics, vol. 3, no. 1, article e5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. S. J. Genuis, “Health issues and the environment-an emerging paradigm for providers of obstetrical and gynaecological health care,” Human Reproduction, vol. 21, pp. 2201–2208, 2006. View at Google Scholar
  55. Z. Shi, K. E. Valdez, A. Y. Ting, A. Franczak, S. L. Gum, and B. K. Petroff, “Ovarian endocrine disruption underlies premature reproductive senescence following environmentally relevant chronic exposure to the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin,” Biology of Reproduction, vol. 76, no. 2, pp. 198–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. V. Lacey Jr., S. S. Devesa, and L. A. Brinton, “Recent trends in breast cancer incidence and mortality,” Environmental and Molecular Mutagenesis, vol. 39, no. 2-3, pp. 82–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. I. A. T. M. Meerts, R. J. Letcher, S. Hoving et al., “In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds,” Environmental Health Perspectives, vol. 109, no. 4, pp. 399–407, 2001. View at Google Scholar · View at Scopus
  58. R. Recio-Vega, V. Velazco-Rodriguez, G. Ocampo-Gómez, S. Hernandez-Gonzalez, P. Ruiz-Flores, and F. Lopez-Marquez, “Serum levels of polychlorinated biphenyls in Mexican women and breast cancer risk,” Journal of Applied Toxicology, vol. 31, no. 3, pp. 270–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. A. Rusiecki, T. R. Holford, S. H. Zahm, and T. Zheng, “Polychlorinated biphenyls and breast cancer risk by combined estrogen and progesterone receptor status,” European Journal of Epidemiology, vol. 19, no. 8, pp. 793–801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Laden, N. Ishibe, S. E. Hankinson et al., “Polychlorinated biphenyls, cytochrome P450 1A1, and breast cancer risk in the Nurses' Health Study,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 12, pp. 1560–1565, 2002. View at Google Scholar · View at Scopus
  61. S. Pang, J. Q. Cao, B. H. Katz, C. L. Hayes, T. R. Sutter, and D. C. Spink, “Inductive and inhibitory effects of non-ortho-substituted polychlorinated biphenyls on estrogen metabolism and human cytochromes P450 1A1 and 1B1,” Biochemical Pharmacology, vol. 58, no. 1, pp. 29–38, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Ptak, G. Ludewig, A. Rak, W. Nadolna, M. Bochenek, and E. L. Gregoraszczuk, “Induction of cytochrome P450 1A1 in MCF-7 human breast cancer cells by 4-chlorobiphenyl (PCB3) and the effects of its hydroxylated metabolites on cellular apoptosis,” Environment International, vol. 36, no. 8, pp. 935–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. H. Lin, C. L. Huang, M. C. Chuang et al., “Protective role of estrogen receptor-alpha on lower chlorinated PCB congener-induced DNA damage and repair in human tumoral breast cells,” Toxicology Letters, vol. 188, no. 1, pp. 11–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Radice, E. Chiesara, S. Fucile, and L. Marabini, “Different effects of PCB101, PCB118, PCB138 and PCB153 alone or mixed in MCF-7 breast cancer cells,” Food and Chemical Toxicology, vol. 46, no. 7, pp. 2561–2567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Ptak, K. Mazur, and E. L. Gregoraszczuk, “Comparison of combinatory effects of PCBs (118, 138, 153 and 180) with 17 β-estradiol on proliferation and apoptosis in MCF-7 breast cancer cells,” Toxicology and Industrial Health, vol. 27, no. 4, pp. 315–321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Liu, S. Li, and Y. Du, “Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating rho-associated kinase (ROCK),” PLoS ONE, vol. 5, no. 6, Article ID e11272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Y. Eum, Y. W. Lee, B. Hennig, and M. Toborek, “VEGF regulates PCB 104-mediated stimulation of permeability and transmigration of breast cancer cells in human microvascular endothelial cells,” Experimental Cell Research, vol. 296, no. 2, pp. 231–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. J. L. Barber, M. J. Walsh, R. Hewitt, K. C. Jones, and F. L. Martin, “Low-dose treatment with polybrominated diphenyl ethers (PBDEs) induce altered characteristics in MCF-7 cells,” Mutagenesis, vol. 21, no. 5, pp. 351–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Mercado-Feliciano and R. M. Bigsby, “The polybrominated diphenyl ether mixture DE-71 ls. Mildly estrogenic,” Environmental Health Perspectives, vol. 116, no. 5, pp. 605–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. Z. H. Li, X. Y. Liu, N. Wang et al., “Effects of decabrominated diphenyl ether (PBDE-209) in regulation of growth and apoptosis of breast, ovarian, and cervical cancer cells,” Environmental Health Perspectives, vol. 120, pp. 541–546, 2012. View at Google Scholar
  71. P. Kwiecińska, A. Wróbel, and E. Ł. Gregoraszczuk, “Combinatory effects of PBDEs and 17β-estradiol on MCF-7 cell proliferation and apoptosis,” Pharmacological Reports, vol. 63, pp. 189–194, 2011. View at Google Scholar
  72. T. J. Murray, M. V. Maffini, A. A. Ucci, C. Sonnenschein, and A. M. Soto, “Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure,” Reproductive Toxicology, vol. 23, no. 3, pp. 383–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Durando, L. Kass, J. Piva et al., “Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in wistar rats,” Environmental Health Perspectives, vol. 115, no. 1, pp. 80–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. R. A. Keri, S. M. Ho, P. A. Hunt, K. E. Knudsen, A. M. Soto, and G. S. Prins, “An evaluation of evidence for the carcinogenic activity of bisphenol A,” Reproductive Toxicology, vol. 24, no. 2, pp. 240–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. V. Fernandez and J. Russo, “Estrogen and Xenoestrogens in breast cancer,” Toxicologic Pathology, vol. 38, no. 1, pp. 110–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. C. M. Olsen, E. T. M. Meussen-Elholm, M. Samuelsen, J. A. Holme, and J. K. Hongslo, “Effects of the environmental oestrogens bisphenol A, tetrachlorobisphenol A, tetrabromobisphenol A, 4-hydroxybiphenyl and 4,4′-dihydroxybiphenyl on oestrogen receptor binding, cell proliferation and regulation of oestrogen sensitive proteins in the human breast cancer cell line MCF-7,” Pharmacology and Toxicology, vol. 92, no. 4, pp. 180–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Ricupito, G. Del Pozzo, N. Diano et al., “Effect of bisphenol A with or without enzyme treatment on the proliferation and viability of MCF-7 cells,” Environment International, vol. 35, no. 1, pp. 21–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Diel, S. Olff, S. Schmidt, and H. Michna, “Effects of the environmental estrogens bisphenol A, o,p′-DDT, p-tert-octylphenol and coumestrol on apoptosis induction, cell proliferation and the expression of estrogen sensitive molecular parameters in the human breast cancer cell line MCF-7,” Journal of Steroid Biochemistry and Molecular Biology, vol. 80, no. 1, pp. 61–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. H. R. Lee, K. A. Hwang, M. A. Park, B. R. Yi, E. B. Jeung, and K. C. Choi, “Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway,” International Journal of Molecular Medicine, vol. 29, pp. 883–890, 2012. View at Google Scholar
  80. V. Bencko, “Human exposure to endocrine disrupters: carcinogenic risk assessment,” Folia Histochemica et Cytobiologica, vol. 39, no. 2, pp. 24–25, 2001. View at Google Scholar · View at Scopus
  81. T. A. L. Brevini, S. B. Zaneto, and F. Cillo, “Effects of endocrine disruptors on developmental and reproductive functions,” Current Drug Targets, vol. 5, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. P. O. Darnerud and S. Risberg, “Tissue localisation of tetra- and pentabromodiphenyl ether congeners (BDE-47, -85 and -99) in perinatal and adult C57BL mice,” Chemosphere, vol. 62, no. 3, pp. 485–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. C. E. Talsness, S. N. Kuriyama, A. Sterner-Kock et al., “In utero and lactational exposures to low doses of polybrominated diphenyl ether-47 alter the reproductive system and thyroid gland of female rat offspring,” Environmental Health Perspectives, vol. 116, no. 3, pp. 308–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. C. A. Hilliard, M. J. Armstrong, C. I. Bradt, R. B. Hill, S. K. Greenwood, and S. M. Galloway, “Chromosome aberrations in vitro related to cytotoxicity of nonmutagenic chemicals and metabolic poisons,” Environmental and Molecular Mutagenesis, vol. 31, pp. 316–326, 1998. View at Google Scholar
  85. S. M. Galloway, J. E. Miller, M. J. Armstrong, C. L. Bean, T. R. Skopek, and W. W. Nichols, “DNA synthesis inhibition as an indirect mechanism of chromosome aberrations: comparison of DNA-reactive and non-DNA-reactive clastogens,” Mutation Research, vol. 400, no. 1-2, pp. 169–186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. R. R. Newbold, W. N. Jefferson, and E. Padilla-Banks, “Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract,” Reproductive Toxicology, vol. 24, no. 2, pp. 253–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Ptak, A. Wróbel, and E. L. Gregoraszczuk, “Effect of bisphenol-A on the expression of selected genes involved in cell cycle and apoptosis in the OVCAR-3 cell line,” Toxicology Letters, vol. 202, no. 1, pp. 30–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. K. A. Hwang, S. H. Park, B. R. Yi, and K. C. Choi, “Gene alterations of ovarian cancer cells expressing estrogen receptors by estrogen and bisphenol a using microarray analysis,” Laboratory Animal Research, vol. 27, pp. 99–107, 2011. View at Google Scholar
  89. A. Ptak and E. L. Gregoraszczuk, “Bisphenol A induces leptin receptor expression, creating more binding sites for leptin, and activates the JAK/Stat, MAPK/ERK and PI3K/Akt signalling pathways in human ovarian cancer cell,” Toxicology Letters, vol. 210, pp. 332–337, 2012. View at Google Scholar