Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013 (2013), Article ID 841514, 7 pages
http://dx.doi.org/10.1155/2013/841514
Research Article

Oral Glutamine Is Superior Than Oral Glucose to Promote Glycemia Recovery in Mice Submitted to Insulin-Induced Hypoglycemia

1Department of Pharmacology and Therapeutics, State University of Maringá, 87020-900 Maringá, PR, Brazil
2Department of Physiological Sciences, State University of Maringá, 87020-900 Maringá, PR, Brazil

Received 23 March 2013; Revised 19 June 2013; Accepted 24 July 2013

Academic Editor: Dariush Elahi

Copyright © 2013 Amanda Nunes Santiago et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Davis and M. D. Alonso, “Hypoglycemia as a barrier to glycemic control,” Journal of Diabetes and Its Complications, vol. 18, no. 1, pp. 60–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Singh, A. Jain, and G. Kaur, “Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage,” Molecular and Cellular Biochemistry, vol. 260, no. 1, pp. 153–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Hershey, N. Bhargava, M. Sadler, N. H. White, and S. Craft, “Conventional versus intensive diabetes therapy in children with type 1 diabetes: effects on memory and motor speed,” Diabetes Care, vol. 22, no. 8, pp. 1318–1324, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. C. D. Agardh, I. Rosen, and E. Ryding, “Persistent vegetative state with high cerebral blood flow following profound hypoglycemia,” Annals of Neurology, vol. 14, no. 4, pp. 482–486, 1983. View at Google Scholar · View at Scopus
  5. H. M. Souza, N. S. Hell, G. Lopes, and R. B. Bazotte, “Effect of combined administration of counterregulatory hormones during insulin-induced hypoglycemia in rats: lipolysis mediated by a β-adrenergic mechanism contributes to hyperglycemia,” Brazilian Journal of Medical and Biological Research, vol. 27, no. 12, pp. 2883–2887, 1994. View at Google Scholar · View at Scopus
  6. G. Lopes, N. S. Hell, F. B. Lima, M. Vardanega, and R. B. Bazotte, “Responsiveness of glycogen catabolism to adrenergic agonists during insulin-induced hypoglycemia in rat livers,” General Pharmacology, vol. 30, no. 4, pp. 593–599, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. Souza, N. S. Hell, G. Lopes, and R. B. Bazotte, “Synergistic effect of counterregulatory hormones during insulin-induced hypoglycemia in rats: participation of lipolysis and gluconeogenesis to hyperglycemia,” Acta Pharmacologica Sinica, vol. 17, no. 5, pp. 455–459, 1996. View at Google Scholar · View at Scopus
  8. R. F. Garcia, V. A. F. G. Gazola, H. C. Barrena et al., “Blood amino acids concentration during insulin induced hypoglycemia in rats: the role of alanine and glutamine in glucose recovery,” Amino Acids, vol. 33, no. 1, pp. 151–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. C. Barrena, V. A. F. G. Gazola, M. M. D. P. Furlan, R. F. Garcia, H. M. de Souza, and R. B. Bazotte, “Ketogenesis evaluation in perfused liver of diabetic rats submitted to short-term insulin-induced hypoglycemia,” Cell Biochemistry and Function, vol. 27, no. 6, pp. 383–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. A. F. G. Gazola, R. F. Garcia, E. M. Hartmann et al., “Glycemia recovery with oral amino acid administration during experimental short-term insulin-induced hypoglycemia,” Journal of Diabetes and its Complications, vol. 21, no. 5, pp. 320–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Rodrigues, K. P. S. Feitosa, A. M. Felisberto Jr., H. C. Barrena, R. Curi, and R. B. Bazotte, “Comparative effects of short-term and long-term insulin-induced hypoglycemia on glucose production in the perfused livers of weaned rats,” Pharmacological Reports, vol. 63, no. 5, pp. 1252–1257, 2011. View at Google Scholar · View at Scopus
  12. F. P. M. Schiavon, V. A. F. G. Gazola, M. M. D. P. Furlan, H. C. Barrena, and R. B. Bazotte, “Paradoxical increase in liver ketogenesis during long-term insulin-induced hypoglycemia in diabetic rats,” Experimental Biology and Medicine, vol. 236, no. 2, pp. 227–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Y. Saleh and P. E. Cryer, “Alanine and terbutaline in the prevention of nocturnal hypoglycemia in IDDM,” Diabetes Care, vol. 20, no. 8, pp. 1231–1236, 1997. View at Google Scholar · View at Scopus
  14. P. Kin, H. Parkin, I. A. MacDonald, C. Barber, and R. B. Tattersall, “The effect of intravenous lactate on cerebral function during hypoglycemia,” Diabetic Medical, vol. 14, pp. 19–28, 1997. View at Google Scholar
  15. S. W. Suh, K. Aoyama, Y. Matsomori, J. Liu, and R. A. Swanson, “Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment,” Diabetes, vol. 54, no. 5, pp. 1452–1458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Obici, T. M. Tavoni, H. C. Barrena, R. Curi, and R. B. Bazotte, “Time sequence of the intensification of the liver glucose production induced by high-fat diet in mice,” Cell Biochemistry and Function, vol. 30, pp. 335–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Tobar, A. G. Oliveira, D. Guadagnini et al., “Diacerhein improves glucose tolerance and insulin sensitivity in mice on a high-fat diet,” Endocrinology, vol. 152, no. 11, pp. 4080–4093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Haida, G. Bertachini, T. Tavoni, M. Guilhermetti, M. R. Loures, and R. B. Bazotte, “Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction,” Brazilian Archives of Biology and Technology, vol. 55, pp. 389–394, 2012. View at Google Scholar
  19. L. H. Guerreiro, D. Da Silva, M. Sola-Penna, D. M. Mizurini, and L. M. Lima, “Amylin induces hypoglycemia in mice,” Anais da Academia Brasileira de Ciências, vol. 85, pp. 349–354, 2013. View at Google Scholar
  20. I. Gutmann and W. Wahlefeld, “L-(+)-Lactate. Determination with lactate dehydrogenase and NAD,” in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., pp. 1464–1472, Academic Press, New York, NY, USA, 1974. View at Google Scholar
  21. R. Czok and W. Lamprecht, “Pyruvate, phosphoenolpyruvate and D-glycerate-2-phosphate,” in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., pp. 1446–1448, Academic Press, New York, NY, USA, 1974. View at Google Scholar
  22. I. Gutmann and H. U. Bergmeyer, “Determination of urea, indicator reaction with phenol and hypochorite,” in Methods of Enzymatic AnalysisVerlag, H. U. Bergmeyer, Ed., pp. 1790–1798, Academic Press, New York, NY, USA, 1974. View at Google Scholar
  23. M. Ader and R. N. Bergman, “Peripheral effects of insulin dominate suppression of fasting hepatic glucose production,” American Journal of Physiology, vol. 258, no. 6, pp. E1020–E1032, 1990. View at Google Scholar · View at Scopus
  24. M. A. Osundiji, M. L. Godes, M. L. Evans, and N. N. Danial, “BAD modulates counterregulatory responses to hypoglycemia and protective glucoprivic feeding,” PLoS ONE, vol. 6, no. 12, Article ID e28016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Shamoon, R. Hendler, and R. S. Sherwin, “Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 52, no. 6, pp. 1235–1241, 1981. View at Google Scholar · View at Scopus
  26. C. Moore and M. Woollard, “Dextrose 10% or 50% in the treatment of hypoglycaemia out of hospital? A randomised controlled trial,” Emergency Medicine Journal, vol. 22, no. 7, pp. 512–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. F. Garcia, V. A. F. G. Gazola, E. M. Hartmann et al., “Oral glutamine dipeptide promotes acute glycemia recovery in rats submitted to long-term insulin induced hypoglycemia,” Latin American Journal of Pharmacy, vol. 27, no. 2, pp. 229–234, 2008. View at Google Scholar · View at Scopus
  28. W. W. Souba, “Glutamine: a key substrate for the splanchnic bed,” Annual Review of Nutrition, vol. 11, pp. 285–308, 1991. View at Google Scholar · View at Scopus
  29. P. J. Hanson and D. S. Parsons, “Metabolism and transport of glutamine and glucose in vascularly perfused small intestine rat,” Biochemical Journal, vol. 166, no. 3, pp. 509–519, 1977. View at Google Scholar · View at Scopus
  30. C. Boutry, H. Matsumoto, C. Bos et al., “Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect?” Amino Acids, pp. 1–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. S. C. Burgess, N. Hausler, M. Merritt et al., “Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 48941–48949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Jiao, B. Feng, and H. Xu, “Mapping MKP-3/FOXO1 interaction and evaluating the effect on gluconeogenesis,” PLoS ONE, vol. 7, no. 7, Article ID e41168. View at Publisher · View at Google Scholar
  33. F. Märki and W. Albrecht, “Biological activity of synthetic human insulin,” Diabetologia, vol. 13, no. 4, pp. 293–295, 1977. View at Google Scholar · View at Scopus
  34. V. K. Bhargava and S. Balakrishnan, “Role of nitric oxide on insulin induced seizures in mice,” Indian Journal of Physiology and Pharmacology, vol. 43, no. 3, pp. 373–377, 1999. View at Google Scholar · View at Scopus
  35. L. J. King, O. H. Lowry, J. V. Passonneau, and V. Venson, “Effects of convulsants on energy reserves in the cerebral cortex,” Journal of Neurochemistry, vol. 14, no. 6, pp. 599–611, 1967. View at Google Scholar · View at Scopus