Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 535401, 6 pages
http://dx.doi.org/10.1155/2014/535401
Research Article

FBP1 Is an Interacting Partner of Menin

1Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Building 10, Room 9C-103, 9000 Rockville, Bethesda, MD 20892, USA
2Departments of Biochemistry & Molecular Biology and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
3Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA

Received 29 April 2014; Revised 30 June 2014; Accepted 1 July 2014; Published 14 July 2014

Academic Editor: Khalid Hussain

Copyright © 2014 Shadia Zaman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Marx, “Molecular genetics of multiple endocrine neoplasia types 1 and 2,” Nature Reviews Cancer, vol. 5, no. 5, pp. 367–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. Marx and S. A. Wells Jr., “Multiple endocrine neoplasia,” in Williams Textbook of Endocrinology, S. Melmed, K. S. Polonsky, P. R. Larsen, and H. M. Kronenberg, Eds., pp. 1728–1767, Elsevier Saunders, Philadelphia, Pa, USA, 12th edition, 2011. View at Google Scholar
  3. C. Heppner, M. B. Kester, S. K. Agarwal et al., “Somatic mutation of the MEN1 gene in parathyroid tumours,” Nature Genetics, vol. 16, no. 4, pp. 375–378, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Crabtree, P. C. Scacheri, J. M. Ward et al., “A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1118–1123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Wang, A. Ozawa, S. Zaman et al., “The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization,” Cancer Research, vol. 71, no. 2, pp. 371–382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Lin and S. J. Elledge, “Multiple tumor suppressor pathways negatively regulate telomerase,” Cell, vol. 113, no. 7, pp. 881–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. S. Kim, A. L. Burns, P. K. Goldsmith et al., “Stable overexpression of MEN1 suppresses tumorigenicity of RAS,” Oncogene, vol. 18, no. 43, pp. 5936–5942, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Hughes, O. Rozenblatt-Rosen, T. A. Milne et al., “Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus,” Molecular Cell, vol. 13, no. 4, pp. 587–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Yokoyama, Z. Wang, J. Wysocka et al., “Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression,” Molecular and Cellular Biology, vol. 24, no. 13, pp. 5639–5649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Yokoyama and M. L. Cleary, “Menin critically links MLL proteins with LEDGF on cancer-associated target genes,” Cancer Cell, vol. 14, no. 1, pp. 36–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Milne, C. M. Hughes, R. Lloyd et al., “Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 749–754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Avigan, B. Strober, and D. Levens, “A far upstream element stimulates c-myc expression in undifferentiated leukemia cells,” The Journal of Biological Chemistry, vol. 265, no. 30, pp. 18538–18545, 1990. View at Google Scholar · View at Scopus
  13. R. Duncan, L. Bazar, G. Michelotti et al., “A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif,” Genes and Development, vol. 8, no. 4, pp. 465–480, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Nie, G. Hu, G. Wei et al., “c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells,” Cell, vol. 151, no. 1, pp. 68–79, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Y. Lin, J. Lovén, P. B. Rahl et al., “Transcriptional amplification in tumor cells with elevated c-Myc,” Cell, vol. 151, no. 1, pp. 56–67, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Liu, F. Kouzine, Z. Nie et al., “The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression,” EMBO Journal, vol. 25, no. 10, pp. 2119–2130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Olanich, B. L. Moss, D. Piwnica-Worms, R. R. Townsend, and J. D. Weber, “Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation,” Oncogene, vol. 30, no. 1, pp. 77–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Rabenhorst, R. Beinoraviciute-Kellner, M. Brezniceanu et al., “Overexpression of the far upstream element binding protein 1 in hepatocellular carcinoma is required for tumor growth,” Hepatology, vol. 50, no. 4, pp. 1121–1129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Thakur, T. Nakamura, G. Calin et al., “Regulation of BRCA1 transcription by specific single-stranded DNA binding factors,” Molecular and Cellular Biology, vol. 23, no. 11, pp. 3774–3787, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. I. Knapp, C. Heppner, A. B. Hickman et al., “Identification and characterization of JunD missense mutants that lack menin binding,” Oncogene, vol. 19, no. 41, pp. 4706–4712, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. K. E. Sukhodolets, A. B. Hickman, S. K. Agarwal et al., “The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene,” Molecular and Cellular Biology, vol. 23, no. 2, pp. 493–509, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. C. Guru, P. K. Goldsmith, A. L. Burns et al., “Menin, the product of the MEN1 gene, is a nuclear protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1630–1634, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Wang, D. Cortez, P. Yazdi, N. Neff, S. J. Elledge, and J. Qin, “BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures,” Genes and Development, vol. 14, no. 8, pp. 927–939, 2000. View at Google Scholar · View at Scopus
  24. M. Malz, A. Weber, S. Singer et al., “Overexpression of far upstream element binding proteins: a mechanism regulating proliferation and migration in liver cancer cells,” Hepatology, vol. 50, no. 4, pp. 1130–1139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Liu, L. He, I. Collins et al., “The FBP interacting repressor targets TFIIH to inhibit activated transcription,” Molecular Cell, vol. 5, no. 2, pp. 331–341, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Zhang and Q. M. Chen, “Far upstream element binding protein 1: a commander of transcription, translation and beyond,” Oncogene, vol. 32, no. 24, pp. 2907–2916, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Bettegowda, N. Agrawal, Y. Jiao et al., “Mutations in CIC and FUBP1 contribute to human oligodendroglioma,” Science, vol. 333, no. 6048, pp. 1453–1455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Huang, B. Gurung, B. Wan et al., “The same pocket in menin binds both MLL and JUND but has opposite effects on transcription,” Nature, vol. 482, no. 7386, pp. 542–546, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. T. Thiel, J. Huang, M. Lei, and X. Hua, “Menin as a hub controlling mixed lineage leukemia,” BioEssays, vol. 34, no. 9, pp. 771–780, 2012. View at Publisher · View at Google Scholar · View at Scopus