Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014 (2014), Article ID 683515, 15 pages
http://dx.doi.org/10.1155/2014/683515
Clinical Study

Effects of Long-Term Testosterone Therapy on Patients with “Diabesity”: Results of Observational Studies of Pooled Analyses in Obese Hypogonadal Men with Type 2 Diabetes

1Private Urology Practice, 27570 Bremerhaven, Germany
2Institute for Urology and Andrology, 22846 Norderstedt, Germany
3International University, 01067 Dresden, Germany
4Research Department, Gulf Medical University, Ajman, UAE
5Department of Epidemiology and Statistics, Boston University School of Public Health, Boston, MA 02118, USA
6Global Medical Affairs Andrology, Bayer Pharma, 13353 Berlin, Germany

Received 30 October 2013; Revised 23 December 2013; Accepted 24 December 2013; Published 11 March 2014

Academic Editor: Antonio Aversa

Copyright © 2014 Ahmad Haider et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Colagiuri, “Diabesity: therapeutic options,” Diabetes, Obesity and Metabolism, vol. 12, no. 6, pp. 463–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Haffner, “Relationship of metabolic risk factors and development of cardiovascular disease and diabetes,” Obesity, vol. 14, supplement 3, pp. 121S–127S, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Tuomilehto, J. Lindström, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. E. S. Huang, A. Basu, M. O'Grady, and J. C. Capretta, “Projecting the future diabetes population size and related costs for the U.S,” Diabetes Care, vol. 32, no. 12, pp. 2225–2229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Seidell, P. Bjorntorp, L. Sjostrom, H. Kvist, and R. Sannerstedt, “Visceral fat accumulation in men is positively associated with insulin, glucose, and C-peptide levels, but negatively with testosterone levels,” Metabolism, vol. 39, no. 9, pp. 897–901, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. H. Sims, E. Danforth Jr., and E. S. Horton, “Endocrine and metabolic effects of experimental obesity in man,” Recent Progress in Hormone Research, vol. 29, pp. 457–496, 1973. View at Google Scholar · View at Scopus
  8. G. A. Colditz, W. C. Willett, A. Rotnitzky, and J. E. Manson, “Weight gain as a risk factor for clinical diabetes mellitus in women,” Annals of Internal Medicine, vol. 122, no. 7, pp. 481–486, 1995. View at Google Scholar · View at Scopus
  9. A. E. Field, E. H. Coakley, A. Must et al., “Impact of overweight on the risk of developing common chronic diseases during a 10-year period,” Archives of Internal Medicine, vol. 161, no. 13, pp. 1581–1586, 2001. View at Google Scholar · View at Scopus
  10. C. L. Hart, D. J. Hole, D. A. Lawlor, and G. Davey Smith, “How many cases of Type 2 diabetes mellitus are due to being overweight in middle age? Evidence from the Midspan prospective cohort studies using mention of diabetes mellitus on hospital discharge or death records,” Diabetic Medicine, vol. 24, no. 1, pp. 73–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. M. V. Narayan, J. P. Boyle, T. J. Thompson, E. W. Gregg, and D. F. Williamson, “Effect of BMI on lifetime risk for diabetes in the U.S,” Diabetes Care, vol. 30, no. 6, pp. 1562–1566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. G. Wannamethee, A. G. Shaper, and M. Walker, “Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes,” Journal of Epidemiology and Community Health, vol. 59, no. 2, pp. 134–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. T. Montague and S. O'Rahilly, “The perils of portliness: causes and consequences of visceral adiposity,” Diabetes, vol. 49, no. 6, pp. 883–888, 2000. View at Google Scholar · View at Scopus
  14. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global Prevalence of Diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. H. Mokdad, E. S. Ford, B. A. Bowman et al., “Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001,” Journal of the American Medical Association, vol. 289, no. 1, pp. 76–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. American Diabetes Association web site 2011, http://www.diabetes.org/diabetes-basics/diabetes-statistics/?loc=DropDownDB-stats.
  17. B. Balkau, J. E. Deanfield, J.-P. Després et al., “International day for the evaluation of abdominal obesity (IDEA): a study of waist circumference, cardiovascular disease, and diabetes mellitus in 168 000 primary care patients in 63 countries,” Circulation, vol. 116, no. 17, pp. 1942–1951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. F. Casanueva, B. Moreno, R. Rodríguez-Azeredo et al., “Relationship of abdominal obesity with cardiovascular disease, diabetes and hyperlipidaemia in Spain,” Clinical Endocrinology, vol. 73, no. 1, pp. 35–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. R. Henry, R. Chilton, and W. T. Garvey, “New options for the treatment of obesity and type 2 diabetes mellitus (narrative review),” Journal of Diabetes and Its Complications, vol. 27, no. 5, pp. 508–518, 2013. View at Google Scholar
  20. S. A. Brethauer, A. Aminian, H. Romero-Talamás et al., “Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus,” Annals of Surgery, vol. 258, no. 4, pp. 628–637, 2013. View at Google Scholar
  21. T. Kadomatsu, M. Tabata, and Y. Oike, “Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases,” FEBS Journal, vol. 278, no. 4, pp. 559–564, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Saad, “Androgen therapy in men with testosterone deficiency: can testosterone reduce the risk of cardiovascular disease?” Diabetes Metabolism Research and Reviews, vol. 28, supplement 2, pp. 52–59, 2012. View at Google Scholar
  23. F. Saad, A. Haider, G. Doros, and A. Traish, “Long-term treatment of hypogonadal men with testosterone produces substantial and sustained weight loss,” Obesity, vol. 21, no. 10, pp. 1975–1981, 2013. View at Google Scholar
  24. A. Aversa, R. Bruzziches, D. Francomano et al., “Effects of testosterone undecanoate on cardiovascular risk factors and atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study,” Journal of Sexual Medicine, vol. 7, no. 10, pp. 3495–3503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Traish, A. Haider, G. Doros, and F. Saad, “Long-term testosterone therapy in hypogonadal men ameliorates elements of the metabolic syndrome: an observational, long-term registry study,” International Journal of Clinical Practice, 2013. View at Publisher · View at Google Scholar
  26. G. Hackett, “Testosterone and the heart,” International Journal of Clinical Practice, vol. 66, no. 7, pp. 648–655, 2012. View at Publisher · View at Google Scholar
  27. D. Kapoor, E. Goodwin, K. S. Channer, and T. H. Jones, “Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes,” European Journal of Endocrinology, vol. 154, no. 6, pp. 899–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. H. Jones, S. Arver, H. M. Behre et al., “Testosterone replacement in hypogonadal men with Type 2 diabetes and/or metabolic syndrome (the TIMES2 study),” Diabetes Care, vol. 34, no. 4, pp. 828–837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Boyanov, Z. Boneva, and V. G. Christov, “Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency,” Aging Male, vol. 6, no. 1, pp. 1–7, 2003. View at Google Scholar · View at Scopus
  30. S. Y. Kalinchenko, Y. A. Tishova, G. J. Mskhalaya, L. J. G. Gooren, E. J. Giltay, and F. Saad, “Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study,” Clinical Endocrinology, vol. 73, no. 5, pp. 602–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Cornoldi, G. Caminiti, G. Marazzi et al., “Effects of chronic testosterone administration on myocardial ischemia, lipid metabolism and insulin resistance in elderly male diabetic patients with coronary artery disease,” International Journal of Cardiology, vol. 142, no. 1, pp. 50–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Caminiti, M. Volterrani, F. Iellamo et al., “Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure,” Journal of the American College of Cardiology, vol. 54, no. 10, pp. 919–927, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Corona, M. Monami, G. Rastrelli et al., “Testosterone and metabolic syndrome: a meta-analysis study,” Journal of Sexual Medicine, vol. 8, no. 1, pp. 272–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. A. Yassin and G. Doros, “Testosterone therapy in hypogonadal men results in sustained and clinically meaningful weight loss,” Clinical Obesity, vol. 3, no. 3-4, pp. 73–83, 2013. View at Publisher · View at Google Scholar
  35. G. Hackett, N. Cole, M. Bhartia et al., “Testosterone replacement therapy with long-acting testosterone undecanoate improves sexual function and quality-of-life parameters vs. placebo in a population of men with type 2 diabetes,” Journal of Sexual Medicine, vol. 10, no. 6, pp. 1612–1627, 2013. View at Google Scholar
  36. D. Francomano, A. Ilacqua, R. Bruzziches et al., “Effects of 5-year treatment with testosterone undecanoate on lower urinary tract symptoms in obese men with hypogonadism and metabolic syndrome,” Urology, vol. 83, no. 1, pp. 167–174, 2014. View at Publisher · View at Google Scholar
  37. M. Zitzmann, A. Mattern, J. Hanisch et al., “IPASS: a study on the tolerability and effectiveness of injectable testosterone undecanoate for the treatment of male hypogonadism in a worldwide sample of 1, 438 men,” Journal of Sexual Medicine, vol. 10, no. 2, pp. 579–588, 2013. View at Publisher · View at Google Scholar
  38. J. F. Reckelhoff, “Gender differences in the regulation of blood pressure,” Hypertension, vol. 37, no. 5, pp. 1199–1208, 2001. View at Google Scholar · View at Scopus
  39. R. K. Dubey, S. Oparil, B. Imthurn, and E. K. Jackson, “Sex hormones and hypertension,” Cardiovascular Research, vol. 53, no. 3, pp. 688–708, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J.-Y. Li, J.-C. Zhu, J.-T. Dou et al., “Effects of androgen supplementation therapy on partial androgen deficiency in the aging male: a preliminary study,” Aging Male, vol. 5, no. 1, pp. 47–51, 2002. View at Google Scholar · View at Scopus
  41. J. C. Smith, S. Bennett, L. M. Evans et al., “The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4261–4267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Dockery, C. J. Bulpitt, S. Agarwal, M. Donaldson, and C. Rajkumar, “Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia,” Clinical Science, vol. 104, no. 2, pp. 195–201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Dart and B. A. Kingwell, “Pulse pressure—a review of mechanisms and clinical relevance,” Journal of the American College of Cardiology, vol. 37, no. 4, pp. 975–984, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. C. M. Hoyos, B. J. Yee, C. L. Phillips et al., “Body compositional and cardiometabolic effects of testosterone therapy in obese men with severe obstructive sleep apnoea: a randomized placebo-controlled trial,” European Journal of Endocrinology, vol. 167, no. 4, pp. 531–541, 2012. View at Publisher · View at Google Scholar
  45. C. Richard, P. Couture, S. Desroches, and B. Lamarche, “Effect of the Mediterranean diet with and without weight loss on markers of inflammation in men with metabolic syndrome,” Obesity, vol. 21, no. 1, pp. 51–57, 2013. View at Publisher · View at Google Scholar
  46. S. K. Musani, R. S. Vasan, A. Bidulescu et al., “Aldosterone, C-reactive protein, and plasma B-type natriuretic peptide are associated with the development of metabolic syndrome and longitudinal changes in metabolic syndrome components: findings from the Jackson Heart Study,” Diabetes Care, vol. 36, no. 10, pp. 3084–3092, 2013. View at Publisher · View at Google Scholar
  47. D. Withrow and D. A. Alter, “The economic burden of obesity worldwide: a systematic review of the direct costs of obesity,” Obesity Reviews, vol. 12, no. 2, pp. 131–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and A. H. Anis, “The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis,” BMC Public Health, vol. 9, article 88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. B. H. Goodpaster, D. E. Kelley, R. R. Wing, A. Meier, and F. L. Thaete, “Effects of weight loss on regional fat distribution and insulin sensitivity in obesity,” Diabetes, vol. 48, no. 4, pp. 839–847, 1999. View at Google Scholar · View at Scopus
  50. K. M. Utzschneider, D. B. Carr, S. M. Barsness, S. E. Kahn, and R. S. Schwartz, “Diet-induced weight loss is associated with an improvement in β-cell function in older men,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2704–2710, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. R. F. Hamman, R. R. Wing, S. L. Edelstein et al., “Effect of weight loss with lifestyle intervention on risk of diabetes,” Diabetes Care, vol. 29, no. 9, pp. 2102–2107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J.-P. Després, I. Lemieux, and D. Prud'homme, “Treatment of obesity: need to focus on high risk abdominally obese patients,” British Medical Journal, vol. 322, no. 7288, pp. 716–720, 2001. View at Google Scholar · View at Scopus
  53. S. A. Saboor Aftab, S. Kumar, and T. M. Barber, “The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism,” Clinical Endocrinology, vol. 78, no. 3, pp. 330–337, 2013. View at Publisher · View at Google Scholar
  54. D. M. Kelly and T. H. Jones, “Testosterone: a vascular hormone in health and disease,” Journal of Endocrinology, vol. 217, no. 3, pp. 47–71, 2013. View at Google Scholar
  55. D. M. Kelly and T. H. Jones, “Testosterone: a metabolic hormone in health and disease,” Journal of Endocrinology, vol. 217, no. 3, pp. R25–R45, 2013. View at Publisher · View at Google Scholar
  56. P. M. Rao, D. M. Kelly, and T. H. Jones, “Testosterone and insulin resistance in the metabolic syndrome and T2DM in men,” Nature Reviews Endocrinology, vol. 9, no. 8, pp. 479–493, 2013. View at Publisher · View at Google Scholar
  57. C. M. Phillips and I. J. Perry, “Does inflammation determine metabolic health status in obese and nonobese adults?” Journal of Clinical Endocrinology and Metabolism, 2013. View at Publisher · View at Google Scholar
  58. O. Schnell, I. Amann-Zalan, Z. Jelsovsky et al., “Changes in A1C levels are significantly associated with changes in levels of the cardiovascular risk biomarker hs-CRP: results from the SteP study,” Diabetes Care, vol. 36, no. 7, pp. 2084–2089, 2013. View at Publisher · View at Google Scholar
  59. R. Turner, “Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34),” The Lancet, vol. 352, no. 9131, pp. 854–865, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. S. E. Kahn, S. M. Haffner, M. A. Heise et al., “Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy,” New England Journal of Medicine, vol. 355, no. 23, pp. 2427–2443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Tharakan, T. Tan, and S. Bloom, “Emerging therapies in the treatment of “diabesity”: beyond GLP-1,” Trends in Pharmacological Sciences, vol. 32, no. 1, pp. 8–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Astrup and N. Finer, “Redefining type 2 diabetes: “Diabesity” or “obesity dependent diabetes mellitus”?” Obesity Reviews, vol. 1, no. 2, pp. 57–59, 2000. View at Google Scholar · View at Scopus
  63. A. Astrup, R. Carraro, N. Finer et al., “Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide,” International Journal of Obesity, vol. 36, no. 6, pp. 843–854, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. K. B. Gast, J. W. Smit, M. den Heijer, N. E. O. study group et al., “Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study,” Atherosclerosis, vol. 229, no. 2, pp. 423–429, 2013. View at Google Scholar
  66. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B. Gustafson, “Adipose tissue, inflammation and atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 4, pp. 332–341, 2010. View at Google Scholar · View at Scopus
  68. M. Chilton, A. Dunkley, P. Carter et al., “The effect of anti-obesity drugs on waist circumference: a mixed treatment comparison,” Diabetes, Obesity and Metabolism, 2013. View at Publisher · View at Google Scholar
  69. S. Czernichow, A.-P. Kengne, E. Stamatakis, M. Hamer, and G. D. Batty, “Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk? Evidence from an individual-participant meta-analysis of 82864 participants from nine cohort studies,” Obesity Reviews, vol. 12, no. 9, pp. 680–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Boillot, S. Zoungas, P. Mitchell et al., “Obesity and the microvasculature: a systematic review and meta-analysis,” PLoS ONE, vol. 8, no. 2, Article ID e52708, 2013. View at Google Scholar
  71. E. J. Jacobs, C. C. Newton, Y. Wang et al., “Waist circumference and all-cause mortality in a large US cohort,” Archives of Internal Medicine, vol. 170, no. 15, pp. 1293–1301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. C.-H. Tseng, “Body mass index and waist circumference as determinants of coronary artery disease in Taiwanese adults with type 2 diabetes mellitus,” International Journal of Obesity, vol. 30, no. 5, pp. 816–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Sjöström, K. Narbro, C. D. Sjöström et al., “Effects of bariatric surgery on mortality in Swedish obese subjects,” New England Journal of Medicine, vol. 357, no. 8, pp. 741–752, 2007. View at Google Scholar
  74. H. Buchwald and D. M. Oien, “Metabolic/bariatric surgery worldwide 2008,” Obesity Surgery, vol. 19, no. 12, pp. 1605–1611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. L. L. Baggio and D. J. Drucker, “Biology of incretins: GLP-1 and GIP,” Gastroenterology, vol. 132, no. 6, pp. 2131–2157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. F. Todd, J. P. H. Wilding, C. M. B. Edwards, F. A. Khan, M. A. Ghatei, and S. R. Bloom, “Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus,” European Journal of Clinical Investigation, vol. 27, no. 6, pp. 533–536, 1997. View at Google Scholar · View at Scopus
  77. G. Tharakan, T. Tan, and S. Bloom, “Emerging therapies in the treatment of “diabesity”: Beyond GLP-1,” Trends in Pharmacological Sciences, vol. 32, no. 1, pp. 8–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Raz, M. Hanefeld, L. Xu, C. Caria, D. Williams-Herman, and H. Khatami, “Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus,” Diabetologia, vol. 49, no. 11, pp. 2564–2571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Dhindsa, S. Prabhakar, M. Sethi, A. Bandyopadhyay, A. Chaudhuri, and P. Dandona, “Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5462–5468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. P. A. Dyson, “The therapeutics of lifestyle management on obesity,” Diabetes, Obesity and Metabolism, vol. 12, no. 11, pp. 941–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. The Diabetes Prevention Program Research Group, “Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study,” Diabetes Care, vol. 35, no. 4, pp. 731–737, 2012. View at Google Scholar
  82. S. R. Smith, N. J. Weissman, C. M. Anderson et al., “Multicenter, placebo-controlled trial of lorcaserin for weight management,” New England Journal of Medicine, vol. 363, no. 3, pp. 245–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. K. M. Gadde, D. B. Allison, D. H. Ryan et al., “Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial,” The Lancet, vol. 377, no. 9774, pp. 1341–1352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. W. T. Garvey, D. H. Ryan, M. Look et al., “Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study,” American Journal of Clinical Nutrition, vol. 95, no. 2, pp. 297–308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Turner, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” The Lancet, vol. 352, no. 9131, pp. 837–853, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Nauck, “A critical analysis of the clinical use of incretin-based therapies: the benefits by far outweigh the potential risks,” Diabetes Care, vol. 36, no. 7, pp. 2126–2132, 2013. View at Publisher · View at Google Scholar
  87. V. Muraleedharan, H. Marsh, D. Kapoor et al., “Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes,” European Journal of Endocrinology, vol. 169, no. 6, pp. 725–733, 2013. View at Publisher · View at Google Scholar
  88. G. Hackett, N. Cole, M. Bhartia et al., “Testosterone replacement therapy improves metabolic parameters in hypogonadal men with type 2 diabetes but not in men with coexisting depression: the BLAST study,” The Journal of Sexual Medicine, 2013. View at Publisher · View at Google Scholar
  89. O. Schnell, W. Otter, and E. Standl, “The Munich Myocardial Infarction Registry: translating the European Society of Cardiology (ESC) and European Association for the Study of Diabetes (EASD) guidelines on diabetes, pre-diabetes, and cardiovascular disease into clinical practice,” Diabetes care, vol. 32, pp. S326–330, 2009. View at Google Scholar · View at Scopus