Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 794187, 14 pages
http://dx.doi.org/10.1155/2014/794187
Review Article

Paragangliomas/Pheochromocytomas: Clinically Oriented Genetic Testing

1Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal
2Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., 1099-023 Lisboa, Portugal
3Clínica Universitária de Endocrinologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal

Received 18 March 2014; Accepted 15 April 2014; Published 12 May 2014

Academic Editor: Claudio Letizia

Copyright © 2014 Rute Martins and Maria João Bugalho. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Manger and R. J. Gifford, “Pheochromocytoma: a clinical review,” in Hypertension: Pathophysiology, Diagnosis, and Management, J. Laragh and B. Brenner, Eds., vol. 2, pp. 2225–2244, Raven Press, New York, NY, USA, 2nd edition, 1995. View at Google Scholar
  2. R. DeLellis, R. Lloyd, P. Heitz, and C. Eng, Pathology and Genetics of Tumours of Endocrine Organs (IARC WHO Classification of Tumours), IARC Press, Lyon, France, 2004.
  3. F. Zak and W. Lawson, The Paraganglionic Chemoreceptor System, Springer, New York, NY, USA, 1st edition, 1982.
  4. D. Erickson, Y. C. Kudva, M. J. Ebersold et al., “Benign paragangliomas: Clinical presentation and treatment outcomes in 236 patients,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5210–5216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. E. Baysal and E. N. Myers, “Etiopathogenesis and clinical presentation of carotid body tumors,” Microscopy Research and Technique, vol. 59, no. 3, pp. 256–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. M. Lenders, G. Eisenhofer, M. Mannelli, and K. Pacak, “Phaeochromocytoma,” The Lancet, vol. 366, no. 9486, pp. 665–675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P.-F. Plouin, P. Degoulet, and A. Tugaye, “Screening for phaeochromocytoma: In which hypertensive patients? A semiological study of 2585 patients, including 11 with phaeochromocytoma,” Nouvelle Presse Medicale, vol. 10, no. 11, pp. 869–872, 1981. View at Google Scholar · View at Scopus
  8. P. K. Pellitteri, A. Rinaldo, D. Myssiorek et al., “Paragangliomas of the head and neck,” Oral Oncology, vol. 40, no. 6, pp. 563–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Papaspyrou, T. Mewes, H. Rossmann et al., “Head and neck paragangliomas: report of 175 patients (1989–2010),” Head and Neck, vol. 34, no. 5, pp. 632–637, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. B. E. Baysal, “Hereditary paraganglioma targets diverse paraganglia,” Journal of Medical Genetics, vol. 39, no. 9, pp. 617–622, 2002. View at Google Scholar · View at Scopus
  11. H. P. H. Neumann, D. P. Berger, G. Sigmund et al., “Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel- Lindau disease,” The New England Journal of Medicine, vol. 329, no. 21, pp. 1531–1538, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. J. K. Platts, P. J. Drew, and J. N. Harvey, “Death from phaeochromocytoma: lessons from a post-mortem survey,” Journal of the Royal College of Physicians of London, vol. 29, no. 4, pp. 299–306, 1995. View at Google Scholar · View at Scopus
  13. A. R. McNeil, B. H. Blok, T. D. Koelmeyer, M. P. Burke, and J. M. Hilton, “Phaeochromocytomas discovered during coronial autopsies in Sydney, Melbourne and Auckland,” Australian and New Zealand Journal of Medicine, vol. 30, no. 6, pp. 648–652, 2000. View at Google Scholar · View at Scopus
  14. C. Y. Lo, K. Y. Lam, M. S. Wat, and K. S. Lam, “Adrenal pheochromocytoma remains a frequently overlooked diagnosis,” The American Journal of Surgery, vol. 179, no. 3, pp. 212–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Sinclair, C. G. Isles, and I. Brown, “Secondary hypertension in a blood pressure clinic,” Archives of Internal Medicine, vol. 147, no. 7, pp. 1289–1293, 1987. View at Google Scholar · View at Scopus
  16. G. H. Anderson Jr., N. Blakeman, and D. H. P. Streeten, “The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients,” Journal of Hypertension, vol. 12, no. 5, pp. 609–615, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Omura, J. Saito, K. Yamaguchi, Y. Kakuta, and T. Nishikawa, “Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan,” Hypertension Research, vol. 27, no. 3, pp. 193–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Harari and W. B. Inabnet III, “Malignant pheochromocytoma: a review,” The American Journal of Surgery, vol. 201, no. 5, pp. 700–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. D. R. Thompson, “Pheochromocytoma of the adrenal gland scaled score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases,” The American Journal of Surgical Pathology, vol. 26, no. 5, pp. 551–566, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. V. E. Strong, T. Kennedy, H. Al-Ahmadie et al., “Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis,” Surgery, vol. 143, no. 6, pp. 759–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Wu, A. S. Tischler, R. V. Lloyd et al., “Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score,” The American Journal of Surgical Pathology, vol. 33, no. 4, pp. 599–608, 2009. View at Google Scholar · View at Scopus
  22. S. Ohta, E. W. Lai, A. L. Y. Pang et al., “Downregulation of metastasis suppressor genes in malignant pheochromocytoma,” International Journal of Cancer, vol. 114, no. 1, pp. 139–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ayala-Ramirez, L. Feng, M. M. Johnson et al., “Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. 717–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Feng, Y. Zhu, X. Wang et al., “Predictive factors for malignant pheochromocytoma: analysis of 136 patients,” Journal of Urology, vol. 185, no. 5, pp. 1583–1590, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Szalat, M. Fraenkel, V. Doviner, A. Salmon, and D. J. Gross, “Malignant pheochromocytoma: predictive factors of malignancy and clinical course in 16 patients at a single tertiary medical center,” Endocrine, vol. 39, no. 2, pp. 160–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. S. King, T. Prodanov, V. Kantorovich et al., “Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations,” Journal of Clinical Oncology, vol. 29, no. 31, pp. 4137–4142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. R. R. Lonser, G. M. Glenn, M. Walther et al., “Von Hippel-Lindau disease,” The Lancet, vol. 361, no. 9374, pp. 2059–2067, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. R. E. Ferner, S. M. Huson, N. Thomas et al., “Guidelines for the diagnosis and management of individuals with neurofibromatosis,” Journal of Medical Genetics, vol. 44, no. 2, pp. 81–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Wohllk, H. Schweizer, Z. Erlic et al., “Multiple endocrine neoplasia type 2,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 24, no. 3, pp. 371–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. B. E. Baysal, R. E. Ferrell, J. E. Willett-Brozick et al., “Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma,” Science, vol. 287, no. 5454, pp. 848–851, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. H.-X. Hao, O. Khalimonchuk, M. Schraders et al., “SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma,” Science, vol. 325, no. 5944, pp. 1139–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Niemann and U. Muller, “Mutations in SDHC cause autosomal dominant paraganglioma, type 3,” Nature Genetics, vol. 26, no. 3, pp. 268–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Astuti, F. Latif, A. Dallol et al., “Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma,” The American Journal of Human Genetics, vol. 69, no. 1, pp. 49–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Burnichon, J. J. Brière, R. Libé et al., “SDHA is a tumor suppressor gene causing paraganglioma,” Human Molecular Genetics, vol. 19, no. 15, pp. 3011–3020, 2010. View at Google Scholar
  35. C. Ladroue, R. Carcenac, M. Leporrier et al., “PHD2 mutation and congenital erythrocytosis with paraganglioma,” The New England Journal of Medicine, vol. 359, no. 25, pp. 2685–2692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Schlisio, R. S. Kenchappa, L. C. W. Vredeveld et al., “The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor,” Genes and Development, vol. 22, no. 7, pp. 884–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Qin, L. Yao, E. E. King et al., “Germline mutations in TMEM127 confer susceptibility to pheochromocytoma,” Nature Genetics, vol. 42, no. 3, pp. 229–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Comino-Méndez, F. J. Gracia-Aznárez, F. Schiavi et al., “Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma,” Nature Genetics, vol. 43, no. 7, pp. 663–667, 2011. View at Publisher · View at Google Scholar
  39. Z. Zhuang, C. Yang, F. Lorenzo et al., “Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia,” The New England Journal of Medicine, vol. 367, no. 10, pp. 922–930, 2012. View at Google Scholar
  40. J. Crona, A. Delgado Verdugo, R. Maharjan et al., “Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 7, pp. E1266–E1271, 2013. View at Google Scholar
  41. H. P. H. Neumann, B. Bausch, S. R. McWhinney et al., “Germ-line mutations in nonsyndromic pheochromocytoma,” The New England Journal of Medicine, vol. 346, no. 19, pp. 1459–1466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Bausch, W. Borozdin, and H. P. H. Neumann, “Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma,” The New England Journal of Medicine, vol. 354, no. 25, pp. 2729–2731, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Amar, J. Bertherat, E. Baudin et al., “Genetic testing in pheochromocytoma or functional paraganglioma,” Journal of Clinical Oncology, vol. 23, no. 34, pp. 8812–8818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Burnichon, V. Rohmer, L. Amar et al., “The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 8, pp. 2817–2827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. R. Maher, L. Iselius, J. R. W. Yates et al., “Von Hippel-Lindau disease: a genetic study,” Journal of Medical Genetics, vol. 28, no. 7, pp. 443–447, 1991. View at Google Scholar · View at Scopus
  46. F. Chen, T. Kishida, M. Yao et al., “Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: Correlations with phenotype,” Human Mutation, vol. 5, no. 1, pp. 66–75, 1995. View at Publisher · View at Google Scholar · View at Scopus
  47. M. M. Walther, R. Reiter, H. R. Keiser et al., “Clinical and genetic characterization of pheochromocytoma in von Hippel- Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma,” Journal of Urology, vol. 162, no. 3 I, pp. 659–664, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. H. P. Neumann, “Pheochromocytoma,” in Harrison's Principles of Internal Medicine, D. L. Longo, A. S. Fauci, D. L. Kasper, S. L. Hauser, J. L. Jameson, and J. Loscalzo, Eds., vol. 2, pp. 2962–2967, McGraw-Hill, New York, NY, USA, 18th edition, 2011. View at Google Scholar
  49. G. Eisenhofer, J. W. M. Lenders, H. Timmers et al., “Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma,” Clinical Chemistry, vol. 57, no. 3, pp. 411–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Gaal, F. H. Van Nederveen, Z. Erlic et al., “Parasympathetic paragangliomas are part of the Von Hippel-Lindau syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 11, pp. 4367–4371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Baghai, G. B. Thompson, W. F. Young Jr., C. S. Grant, V. V. Michels, and J. A. van Heerden, “Pheochromocytomas and paragangliomas in von Hippel-Lindau disease: a role for laparoscopic and cortical-sparing surgery,” Archives of Surgery, vol. 137, no. 6, pp. 682–688, 2002. View at Google Scholar · View at Scopus
  52. K. A. Delman, S. E. Shapiro, E. W. Jonasch et al., “Abdominal visceral lesions in von hippel-lindau disease: incidence and clinical behavior of pancreatic and adrenal lesions at a single center,” World Journal of Surgery, vol. 30, no. 5, pp. 665–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. W. Y. Kim and W. G. Kaelin, “Role of VHL gene mutation in human cancer,” Journal of Clinical Oncology, vol. 22, no. 24, pp. 4991–5004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. D. R. Duan, A. Pause, W. H. Burgess et al., “Inhibition of transcription elongation by the VHL tumor suppressor protein,” Science, vol. 269, no. 5229, pp. 1402–1406, 1995. View at Google Scholar · View at Scopus
  55. P. H. Maxwell, M. S. Wlesener, G.-W. Chang et al., “The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis,” Nature, vol. 399, no. 6733, pp. 271–275, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Latif, K. Tory, J. Gnarra et al., “Identification of the von Hippel-Lindau disease tumor suppressor gene,” Science, vol. 260, no. 5112, pp. 1317–1320, 1993. View at Google Scholar · View at Scopus
  57. B. Zbar, T. Kishida, F. Chen et al., “Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan,” Human Mutation, vol. 8, no. 4, pp. 348–357, 1996. View at Google Scholar
  58. C. Stolle, G. Glenn, B. Zbar et al., “Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene,” Human Mutation, vol. 12, no. 6, pp. 417–423, 1998. View at Google Scholar
  59. M. T. Sgambati, C. Stolle, P. L. Choyke et al., “Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offspring with mosaic parents,” The American Journal of Human Genetics, vol. 66, no. 1, pp. 84–91, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. E. R. Maher, A. R. Webster, F. M. Richards et al., “Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL gene mutations,” Journal of Medical Genetics, vol. 33, no. 4, pp. 328–332, 1996. View at Google Scholar · View at Scopus
  61. S. C. Clifford, M. E. Cockman, A. C. Smallwood et al., “Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis invon Hippel-Lindau disease,” Human Molecular Genetics, vol. 10, no. 10, pp. 1029–1038, 2001. View at Google Scholar · View at Scopus
  62. M. A. Hoffman, M. Ohh, H. Yang, J. M. Klco, M. Ivan, and W. G. Kaelin Jr., “Von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF,” Human Molecular Genetics, vol. 10, no. 10, pp. 1019–1027, 2001. View at Google Scholar · View at Scopus
  63. S. L. Kroll, W. R. Paulding, P. O. Schnel et al., “von Hippel-Lindau protein induces hypoxia-regulated arrest of tyrosine hydroxylase transcript elongation in pheochromocytoma cells,” Journal of Biological Chemistry, vol. 274, no. 42, pp. 30109–30114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. P. O. Schnell, M. L. Ignacak, A. L. Bauer, J. B. Striet, W. R. Paulding, and M. F. Czyzyk-Krzeska, “Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors,” Journal of Neurochemistry, vol. 85, no. 2, pp. 483–491, 2003. View at Google Scholar · View at Scopus
  65. Z. Erlic, L. Rybicki, M. Pęczkowska et al., “Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients,” Clinical Cancer Research, vol. 15, no. 20, pp. 6378–6385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. L. Brandi, R. F. Gagel, A. Angeli et al., “Guidelines for diagnosis and therapy of MEN type 1 and type 2,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5658–5671, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. R. T. Kloos, C. Eng, D. B. Evans et al., “Medullary thyroid cancer: management guidelines of the American Thyroid Association,” Thyroid, vol. 19, no. 6, pp. 565–612, 2009. View at Google Scholar · View at Scopus
  68. A. M. J. Moers, R. M. Landsvater, C. Schaap et al., “Familial medullary thyroid carcinoma: not a distinct entity? Genotype- phenotype correlation in a large family,” The American Journal of Medicine, vol. 101, no. 6, pp. 635–641, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. J. R. Hansford and L. M. Mulligan, “Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis,” Journal of Medical Genetics, vol. 37, no. 11, pp. 817–827, 2000. View at Google Scholar · View at Scopus
  70. L. M. Mulligan, C. Eng, C. S. Healey et al., “Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC,” Nature Genetics, vol. 6, no. 1, pp. 70–74, 1994. View at Publisher · View at Google Scholar · View at Scopus
  71. L. M. Mulligan, D. J. Marsh, B. G. Robinson et al., “Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium,” Journal of Internal Medicine, vol. 238, no. 4, pp. 343–346, 1995. View at Google Scholar · View at Scopus
  72. C. Eng, D. Clayton, I. Schuffenecker et al., “The relationship between specific ret proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: international RET mutation consortium analysis,” Journal of the American Medical Association, vol. 276, no. 19, pp. 1575–1579, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. M. J. Bugalho, R. Domingues, and L. Sobrinho, “Molecular diagnosis of multiple endocrine neoplasia Type 2,” Expert Review of Molecular Diagnostics, vol. 3, no. 6, pp. 769–779, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Asai, T. Iwashita, M. Matsuyama, and M. Takahashi, “Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations,” Molecular and Cellular Biology, vol. 15, no. 3, pp. 1613–1619, 1995. View at Google Scholar · View at Scopus
  75. M. G. Borrello, D. P. Smith, B. Pasini et al., “RET activation by germline MEN2A and MEN2B mutations,” Oncogene, vol. 11, no. 11, pp. 2419–2427, 1995. View at Google Scholar · View at Scopus
  76. M. Santoro, F. Carlomagno, A. Romano et al., “Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B,” Science, vol. 267, no. 5196, pp. 381–383, 1995. View at Google Scholar · View at Scopus
  77. C. C. Boedeker, Z. Erlic, S. Richard et al., “Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine neoplasia type 2,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 6, pp. 1938–1944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Modigliani, H. M. Vasen, K. Raue et al., “Pheochromocytoma in multiple endocrine neoplasia type 2: European study,” Journal of Internal Medicine, vol. 238, no. 4, pp. 363–367, 1995. View at Google Scholar · View at Scopus
  79. A. Machens, M. Brauckhoff, H.-J. Holzhausen, P. N. Thanh, H. Lehnert, and H. Dralle, “Codon-specific development of pheochromocytoma in multiple endocrine neoplasia type 2,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 3999–4003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. F. J. Quayle, E. A. Fialkowski, R. Benveniste, and J. F. Moley, “Pheochromocytoma penetrance varies by RET mutation in MEN 2A,” Surgery, vol. 142, no. 6, pp. 800–805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. M. A. Skinner, M. K. DeBenedetti, J. F. Moley, J. A. Norton, and S. A. Wells Jr., “Medullary thyroid carcinoma in children with multiple endocrine neoplasia types 2A and 2B,” Journal of Pediatric Surgery, vol. 31, no. 1, pp. 177–181, 1996. View at Publisher · View at Google Scholar · View at Scopus
  82. “Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference,” Archives of Neurology, vol. 45, no. 5, pp. 575–578, 1988. View at Publisher · View at Google Scholar
  83. M. E. Zöller, B. Rembeck, A. Odén, M. Samuelsson, and L. Angervall, “Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population,” Cancer, vol. 79, no. 11, pp. 2125–2131, 1997. View at Google Scholar
  84. J. C. Carey, B. J. Baty, and J. P. Johnson, “The genetic aspects of neurofibromatosis,” Annals of the New York Academy of Sciences, vol. 486, pp. 45–56, 1986. View at Google Scholar · View at Scopus
  85. M. R. Wallace, D. A. Marchuk, L. B. Andersen et al., “Type 1 neurofibromatosis gene: Identification of a large transcript disrupted in three NF1 patients,” Science, vol. 249, no. 4965, pp. 181–186, 1990. View at Google Scholar · View at Scopus
  86. L. Q. Le and L. F. Parada, “Tumor microenvironment and neurofibromatosis type I: connecting the GAPs,” Oncogene, vol. 26, no. 32, pp. 4609–4616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. M. H. Shen, P. S. Harper, and M. Upadhyaya, “Molecular genetics of neurofibromatosis type 1 (NF1),” Journal of Medical Genetics, vol. 33, no. 1, pp. 2–17, 1996. View at Google Scholar · View at Scopus
  88. V. C. Williams, J. Lucas, M. A. Babcock, D. H. Gutmann, B. Bruce, and B. L. Maria, “Neurofibromatosis type 1 revisited,” Pediatrics, vol. 123, no. 1, pp. 124–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. M. Walther, J. Herring, E. Enquist, H. R. Keiser, and W. M. Linehan, “Von Recklinghausen's disease and pheochromocytomas,” Journal of Urology, vol. 162, no. 5, pp. 1582–1586, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. B. Bausch, W. Borozdin, V. F. Mautner et al., “Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 7, pp. 2784–2792, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Gottlieb and I. P. M. Tomlinson, “Mitochondrial tumour suppressors: a genetic and biochemical update,” Nature Reviews Cancer, vol. 5, no. 11, pp. 857–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. F. H. van Nederveen, J. Gaal, J. Favier et al., “An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis,” The Lancet Oncology, vol. 10, no. 8, pp. 764–771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. J. Gill, D. E. Benn, A. Chou et al., “Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes,” Human Pathology, vol. 41, no. 6, pp. 805–814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. H. J. L. M. Timmers, A. Kozupa, G. Eisenhofer et al., “Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 779–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. H. J. L. M. Timmers, A. P. Gimenez-Roqueplo, M. Mannelli, and K. Pacak, “Clinical aspects of SDHx-related pheochromocytoma and paraganglioma,” Endocrine-Related Cancer, vol. 16, no. 2, pp. 391–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. H. P. H. Neumann, C. Pawlu, M. Pȩczkowska et al., “Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD and gene mutations,” Journal of the American Medical Association, vol. 292, no. 8, pp. 943–951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Cascon, S. Ruiz-Llorente, M. F. Fraga et al., “Genetic and epigenetic profile of sporadic pheochromocytomas,” Journal of Medical Genetics, vol. 41, no. 3, article e30, 2004. View at Google Scholar · View at Scopus
  98. L. D. Hartzell, K. D. McKelvey, R. L. Van Hemert, and J. Dornhoffer, “Cerebellopontine angle tumor in a patient with a maternally inherited SDHD gene mutation,” International Tinnitus Journal, vol. 14, no. 2, pp. 97–100, 2008. View at Google Scholar · View at Scopus
  99. P. M. Yeap, E. S. Tobias, E. Mavraki et al., “Molecular analysis of pheochromocytoma after maternal transmission of SDHD mutation elucidates mechanism of parent-of-origin effect,” The Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 12, pp. E2009–E2013, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. E. F. Hensen, E. S. Jordanova, I. J. H. M. van Minderhout et al., “Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families,” Oncogene, vol. 23, no. 23, pp. 4076–4083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. D. E. Benn, A.-P. Gimenez-Roqueplo, J. R. Reilly et al., “Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 827–836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. C. J. Ricketts, J. R. Forman, E. Rattenberry et al., “Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD,” Human Mutation, vol. 31, no. 1, pp. 41–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Ogawa, K. Shiga, S. Saijo, T. Ogawa, N. Kimura, and A. Horii, “A novel G106D alteration of the SDHD gene in a pedigree with familial paraganglioma,” The American Journal of Medical Genetics A, vol. 140, no. 22, pp. 2441–2446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. H. J. L. M. Timmers, K. Pacak, J. Bertherat et al., “Mutations associated with succinate dehydrogenase d-related malignant paragangliomas,” Clinical Endocrinology, vol. 68, no. 4, pp. 561–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Domingues, P. Montalvão, M. Magalhães, R. Santos, L. Duarte, and M. J. Bugalho, “Identification of three new variants of SDHx genes in a cohort of Portuguese patients with extra-adrenal paragangliomas,” Journal of Endocrinological Investigation, vol. 35, no. 11, pp. 975–980, 2012. View at Google Scholar
  106. J. P. Bayley, H. P. M. Kunst, A. Cascon et al., “SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma,” The Lancet Oncology, vol. 11, no. 4, pp. 366–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. H. P. M. Kunst, M. H. Rutten, J. P. de Mönnink et al., “SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma,” Clinical Cancer Research, vol. 17, no. 2, pp. 247–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. B. E. Baysal, J. E. Willett-Brozick, E. C. Lawrence et al., “Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas,” Journal of Medical Genetics, vol. 39, no. 3, pp. 178–183, 2002. View at Google Scholar · View at Scopus
  109. R. F. Badenhop, J. C. Jansen, P. A. Fagan et al., “The prevalence of SDHB, SDHC, and SDHD mutations in patients with head and neck paraganglioma and association of mutations with clinical features,” Journal of Medical Genetics, vol. 41, no. 7, article e99, 2004. View at Google Scholar · View at Scopus
  110. M. Mannelli, T. Ercolino, V. Giachè, L. Simi, C. Cirami, and G. Parenti, “Genetic screening for pheochromocytoma: Should SDHC gene analysis be included?” Journal of Medical Genetics, vol. 44, no. 9, pp. 586–587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Pȩczkowska, A. Cascon, A. Prejbisz et al., “Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 2, pp. 111–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. F. Schiavi, C. C. Boedeker, B. Bausch et al., “Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene,” The Journal of the American Medical Association, vol. 294, no. 16, pp. 2057–2063, 2005. View at Google Scholar
  113. S. Niemann, U. Müller, D. Engelhardt, and P. Lohse, “Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor site mutation in SDHC,” Human Genetics, vol. 113, no. 1, pp. 92–94, 2003. View at Google Scholar · View at Scopus
  114. J. K. Bickmann, S. Sollfrank, A. Schad et al., “Phenotypic variability and risk of malignancy in SDHC-linked paragangliomas: lessons from 3 unrelated cases with an identical germline mutation (p.Arg133*),” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 3, 2014. View at Publisher · View at Google Scholar
  115. U. Srirangalingam, L. Walker, B. Khoo et al., “Clinical manifestations of familial paraganglioma and phaeochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers,” Clinical Endocrinology, vol. 69, no. 4, pp. 587–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. A. P. Gimenez-Roqueplo, J. Favier, P. Rustin et al., “Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 10, pp. 4771–4774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. P. J. Pollard, J. J. Brière, N. A. Alam et al., “Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations,” Human Molecular Genetics, vol. 14, no. 15, pp. 2231–2239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. P. J. Pollard, M. El-Bahrawy, R. Poulsom et al., “Expression of HIF-1α, HIF-2α (EPAS1), and their target genes in paraganglioma and pheochromocytoma with VHL and SDH mutations,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 11, pp. 4593–4598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Ricketts, E. R. Woodward, P. Killick et al., “Germline SDHB mutations and familial renal cell carcinoma,” Journal of the National Cancer Institute, vol. 100, no. 17, pp. 1260–1262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Pasini and C. A. Stratakis, “SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes,” Journal of Internal Medicine, vol. 266, no. 1, pp. 19–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. E. Korpershoek, J. Favier, J. Gaal et al., “SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas,” The Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. E1472–E1476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Dwight, K. Mann, D. E. Benn et al., “Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 6, pp. E1103–E1108, 2013. View at Google Scholar
  123. J. Welander, S. Garvin, R. Bohnmark et al., “Germline SDHA mutation detected by next-generation sequencing in a young index patient with large paraganglioma,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 8, pp. E1379–E1380, 2013. View at Google Scholar
  124. A. Italiano, C. L. Chen, Y. S. Sung et al., “SDHA loss of function mutations in a subset of young adult wild-type gastrointestinal stromal tumors,” BMC Cancer, vol. 12, article 408, 2012. View at Google Scholar
  125. T. Dwight, D. E. Benn, A. Clarkson et al., “Loss of SDHA expression identifies SDHA mutations in succinate dehydrogenase-deficient gastrointestinal stromal tumors,” The American Journal of Surgical Pathology, vol. 37, no. 2, pp. 226–233, 2013. View at Google Scholar
  126. L. Yao, F. Schiavi, A. Cascon et al., “Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas,” Journal of the American Medical Association, vol. 304, no. 23, pp. 2611–2619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Burnichon, C. Lepoutre-Lussey, J. Laffaire et al., “A novel TMEM127 mutation in a patient with familial bilateral pheochromocytoma,” European Journal of Endocrinology, vol. 164, no. 1, pp. 141–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. H. P. H. Neumann, M. Sullivan, A. Winter et al., “Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites,” The Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 8, pp. E1279–E1282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. N. Abermil, M. Guillaud-Bataille, N. Burnichon et al., “TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 5, pp. E805–E809, 2012. View at Google Scholar
  130. M. S. Elston, G. Y. Meyer-Rochow, D. Prosser, D. R. Love, and J. V. Conaglen, “Novel mutation in the TMEM127 gene associated with phaeochromocytoma,” Internal Medicine Journal, vol. 43, no. 4, pp. 449–451, 2013. View at Google Scholar
  131. N. Burnichon, A. Cascón, F. Schiavi et al., “MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma,” Clinical Cancer Research, vol. 18, no. 10, pp. 2828–2837, 2012. View at Google Scholar
  132. M. Pęczkowska, A. Kowalska, J. Sygut et al., “Testing new susceptibility genes in the cohort of apparently sporadic phaeochromocytoma/paraganglioma patients with clinical characteristics of hereditary syndromes,” Clinical Endocrinology, pp. 817–823, 2013. View at Google Scholar
  133. A. Cascón and M. Robledo, “MAX and MYC: a heritable breakup,” Cancer Research, vol. 72, no. 13, pp. 3119–3124, 2012. View at Google Scholar
  134. W. G. Kaelin Jr. and P. J. Ratcliffe, “Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway,” Molecular Cell, vol. 30, no. 4, pp. 393–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. R. A. Toledo, Y. Qin, S. Srikantan et al., “In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas,” Endocrine-Related Cancer, vol. 20, no. 3, pp. 349–359, 2013. View at Google Scholar
  136. J. Favier, A. Buffet, and A. P. Gimenez-Roqueplo, “HIF2A mutations in paraganglioma with polycythemia,” The New England Journal of Medicine, vol. 367, no. 22, pp. 2161–2162, 2012. View at Google Scholar
  137. I. Comino-Méndez, A. A. de Cubas, C. Bernal et al., “Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis,” Human Molecular Genetics, vol. 22, no. 11, pp. 2169–2176, 2013. View at Google Scholar
  138. A. Buffet, S. Smati, L. Mansuy et al., “Mosaicism in HIF2A-related polycythaemia-paraganglioma syndrome,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 2, pp. E369–E373, 2014. View at Publisher · View at Google Scholar
  139. F. R. Lorenzo, C. Yang, M. N. T. Fu et al., “A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma,” Journal of Molecular Medicine, vol. 91, no. 4, pp. 507–512, 2013. View at Publisher · View at Google Scholar
  140. K. Pacak, I. Jochmanova, T. Prodanov et al., “New syndrome of paraganglioma and somatostatinoma associated with polycythemia,” Journal of Clinical Oncology, vol. 31, no. 13, pp. 1690–1698, 2013. View at Google Scholar
  141. D. Taïeb, C. Yang, B. Delenne et al., “First report of bilateral pheochromocytoma in the clinical spectrum of HIF2A-related polycythemia-paraganglioma syndrome,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 5, pp. E908–E913, 2013. View at Google Scholar
  142. C. Yang, M. G. Sun, J. Matr et al., “Novel HIF2A mutations disrupt oxygen sensing, leading to polycythemia, paragangliomas, and somatostatinomas,” Blood, vol. 121, no. 13, pp. 2563–2566, 2013. View at Google Scholar
  143. C. Wellbrock, M. Karasarides, and R. Marais, “The RAF proteins take centre stage,” Nature Reviews Molecular Cell Biology, vol. 5, no. 11, pp. 875–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Nölting and A. B. Grossman, “Signaling pathways in pheochromocytomas and paragangliomas: prospects for future therapies,” Endocrine Pathology, vol. 23, no. 1, pp. 21–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Crona, M. Nordling, R. Maharjan et al., “Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours,” PLoS ONE, vol. 9, no. 1, Article ID e86756, 2014. View at Google Scholar
  146. M. Nangaku, R. Sato-Yoshitake, Y. Okada et al., “KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria,” Cell, vol. 79, no. 7, pp. 1209–1220, 1994. View at Google Scholar · View at Scopus
  147. C. Zhao, J. Takita, Y. Tanaka et al., “Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta,” Cell, vol. 105, no. 5, pp. 587–597, 2001. View at Google Scholar
  148. I. T. Yeh, R. E. Lenci, Y. Qin et al., “A germline mutation of the KIF1Bβ gene on 1p36 in a family with neural and nonneural tumors,” Human Genetics, vol. 124, no. 3, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Beckhardt, “Statement of the American Society of Clinical Oncology: genetic testing for cancer susceptibility,” Journal of Clinical Oncology, vol. 14, no. 5, pp. 1730–1736, 1996. View at Google Scholar · View at Scopus
  150. S. R. Galan and P. H. Kann, “Genetics and molecular pathogenesis of pheochromocytoma and paraganglioma,” Clinical Endocrinolology (Oxford), vol. 78, no. 2, pp. 165–175, 2013. View at Google Scholar
  151. M. Mannelli, M. Castellano, F. Schiavi et al., “Clinically guided genetic screening in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1541–1547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. A. P. Gimenez-Roqueplo, H. Lehnert, M. Mannelli et al., “Phaeochromocytoma, new genes and screening strategies,” Clinical Endocrinology, vol. 65, no. 6, pp. 699–705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Crona, A. D. Verdugo, D. Granberg et al., “Next-generation sequencing in the clinical genetic screening of patients with pheochromocytoma and paraganglioma,” Endocrine Connections, vol. 2, no. 2, pp. 104–111, 2013. View at Google Scholar
  154. E. Rattenberry, L. Vialard, A. Yeung et al., “A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 7, pp. E1248–E1256, 2013. View at Google Scholar
  155. A. M. McInerney-Leo, M. S. Marshall, B. Gardiner et al., “Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas,” Clinical Endocrinolology, vol. 80, no. 1, pp. 25–33, 2014. View at Google Scholar
  156. K. Pacak, G. Eisenhofer, H. Ahlman et al., “Pheochromocytoma: recommendations for clinical practice from the First International Symposium,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 2, pp. 92–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. M. F. Robinson, E. J. Furst, V. Nunziata et al., “Characterization of the clinical features of five families with hereditary primary cutaneous lichen amyloidosis and multiple endocrine neoplasia type 2,” Henry Ford Hospital Medical Journal, vol. 40, no. 3-4, pp. 249–252, 1992. View at Google Scholar · View at Scopus
  158. L. Simi, R. Sestini, P. Ferruzzi et al., “Phenotype variability of neural crest derived tumours in six Italian families segregating the same founder SDHD mutation Q109X,” Journal of medical genetics, vol. 42, no. 8, article e52, 2005. View at Google Scholar · View at Scopus
  159. M. Pȩczkowska, Z. Erlic, M. M. Hoffmann et al., “Impact of screening kindreds for SDHD p.Cys11X as a common mutation associated with paraganglioma syndrome type 1,” The Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 12, pp. 4818–4825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. E. F. Hensen, N. van Duinen, J. C. Jansen et al., “High prevalence of founder mutations of the succinate dehydrogenase genes in the Netherlands,” Clinical Genetics, vol. 81, no. 3, pp. 284–288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. F. Schiavi, S. Demattè, M. E. Cecchini et al., “The endemic paraganglioma syndrome type 1: Origin, spread, and clinical expression,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 4, pp. E637–E641, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. R. G. Martins, J. B. Nunes, V. Máximo et al., “A founder SDHB mutation in Portuguese paraganglioma patients,” Endocrine-Related Cancer, vol. 20, no. 6, pp. L23–L26, 2013. View at Google Scholar