Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 854392, 9 pages
http://dx.doi.org/10.1155/2014/854392
Research Article

Distribution of Abdominal Obesity and Fitness Level in Overweight and Obese Korean Adults

1Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of Korea
2Department of Sport and Leisure Studies, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
3Biostatistics Collaboration Units, Department of Research Affairs, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of Korea

Received 29 August 2013; Revised 1 November 2013; Accepted 27 December 2013; Published 2 March 2014

Academic Editor: Peter Bodary

Copyright © 2014 Sue Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M.-A. Cornier, J.-P. Després, N. Davis et al., “Assessing adiposity: a scientific statement from the American Heart Association,” Circulation, vol. 124, no. 18, pp. 1996–2019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Pischon, H. Boeing, K. Hoffmann et al., “General and abdominal adiposity and risk of death in Europe,” The New England Journal of Medicine, vol. 359, no. 20, pp. 2105–2120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M.-C. Pouliot, J.-P. Despres, S. Lemieux et al., “Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women,” American Journal of Cardiology, vol. 73, no. 7, pp. 460–468, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. H. E. Bays, J. M. González-Campoy, G. A. Bray et al., “Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity,” Expert Review of Cardiovascular Therapy, vol. 6, no. 3, pp. 343–368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Liu, C. S. Fox, D. A. Hickson et al., “Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 12, pp. 5419–5426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the framingham heart study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Ross, J. Aru, J. Freeman, R. Hudson, and I. Janssen, “Abdominal adiposity and insulin resistance in obese men,” American Journal of Physiology, vol. 282, no. 3, pp. E657–E663, 2002. View at Google Scholar · View at Scopus
  8. L. Heilbronn, S. R. Smith, and E. Ravussin, “Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus,” International Journal of Obesity, vol. 28, supplement 4, pp. S12–S21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Fujioka, Y. Matsuzawa, K. Tokunaga, and S. Tarui, “Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity,” Metabolism, vol. 36, no. 1, pp. 54–59, 1987. View at Google Scholar · View at Scopus
  10. B. M. Kaess, A. Pedley, J. M. Massaro, J. Murabito, U. Hoffmann, and C. S. Fox, “The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk,” Diabetologia, vol. 55, no. 10, pp. 2622–2630, 2012. View at Publisher · View at Google Scholar
  11. R. M. Steele, S. Brage, K. Corder, N. J. Wareham, and U. Ekelund, “Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth,” Journal of Applied Physiology, vol. 105, no. 1, pp. 342–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. D. McArdle, Essentials of Exercise Physiology, Lippincott Williams & Wilkins, New York, NY, USA, 2nd edition, 2000.
  13. G. E. Duncan, “Exercise, fitness, and cardiovascular disease risk in type 2 diabetes and the metabolic syndrome,” Current Diabetes Reports, vol. 6, no. 1, pp. 29–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Ross and I. Janssen, “Is abdominal fat preferentially reduced in response to exercise-induced weight loss?” Medicine & Science in Sports & Exercise, vol. 31, no. 11, pp. S568–S572, 1999. View at Google Scholar · View at Scopus
  15. D. Vissers, W. Hens, J. Taeymans, J. P. Baeyens, J. Poortmans, and L. van Gaal, “The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis,” PLoS ONE, vol. 8, no. 2, Article ID e56415, 2013. View at Publisher · View at Google Scholar
  16. C. Barba, T. Cavalli-Sforza, J. Cutter et al., “Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies,” The Lancet, vol. 363, no. 9403, pp. 157–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. D. Sesso, M. J. Stampfer, B. Rosner et al., “Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men,” Hypertension, vol. 36, no. 5, pp. 801–807, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hagströmer, P. Oja, and M. Sjöström, “The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity,” Public Health Nutrition, vol. 9, no. 6, pp. 755–762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Publisher · View at Google Scholar · View at Scopus
  20. S. F. Siconolfi, C. E. Garber, T. M. Lasater, and R. A. Carleton, “A simple, valid step test for estimating maximal oxygen uptake in epidemiologic studies,” American Journal of Epidemiology, vol. 121, no. 3, pp. 382–390, 1985. View at Google Scholar · View at Scopus
  21. A. Tchernof and J. P. Despres, “Pathophysiology of human visceral obesity: an update,” Physiological Reviews, vol. 93, no. 1, pp. 359–404, 2013. View at Publisher · View at Google Scholar
  22. K. A. Britton, J. M. Massaro, J. M. Murabito, B. E. Kreger, U. Hoffmann, and C. S. Fox, “Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality,” Journal of the American College of Cardiology, vol. 62, no. 10, pp. 921–925, 2013. View at Publisher · View at Google Scholar
  23. J. D. Smith, A.-L. Borel, J.-A. Nazare et al., “Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 5, pp. 1517–1525, 2012. View at Publisher · View at Google Scholar
  24. B. J. Arsenault, D. Lachance, I. Lemieux et al., “Visceral adipose tissue accumulation, cardiorespiratory fitness, and features of the metabolic syndrome,” Archives of Internal Medicine, vol. 167, no. 14, pp. 1518–1525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. I. J. Neeland, C. R. Ayers, A. K. Rohatgi et al., “Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults,” Obesity, vol. 21, no. 9, pp. E439–E447, 2012. View at Publisher · View at Google Scholar
  26. S. A. Porter, J. M. Massaro, U. Hoffmann, R. S. Vasan, C. J. O'Donnel, and C. S. Fox, “Abdominal subcutaneous adipose tissue: a protective fat depot?” Diabetes Care, vol. 32, no. 6, pp. 1068–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. B. A. Larsen, M. A. Allison, E. Kang et al., “Associations of physical activity and sedentary behavior with regional fat deposition,” Medicine & Science in Sports & Exercise, vol. 46, no. 3, pp. 520–528, 2014. View at Google Scholar
  28. S. E. Taksali, S. Caprio, J. Dziura et al., “High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype,” Diabetes, vol. 57, no. 2, pp. 367–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-P. Després and I. Lemieux, “Abdominal obesity and metabolic syndrome,” Nature, vol. 444, no. 7121, pp. 881–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. L. Newton Jr., C. Bouchard, G. Bray et al., “Abdominal adiposity depots are correlates of adverse cardiometabolic risk factors in Caucasian and African-American adults,” Nutrition & Diabetes, vol. 1, no. 1, article e2, 2011. View at Publisher · View at Google Scholar
  31. J.-W. Lee, H.-R. Lee, J.-Y. Shim et al., “Viscerally obese women with normal body weight have greater brachial-ankle pulse wave velocity than nonviscerally obese women with excessive body weight,” Clinical Endocrinology, vol. 66, no. 4, pp. 572–578, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Ross and P. M. Janiszewski, “Is weight loss the optimal target for obesity-related cardiovascular disease risk reduction?” The Canadian Journal of Cardiology, vol. 24, supplement, pp. 25D–31D, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Nilsson, P. Hedberg, T. Jonason, I. Lönnberg, and J. Öhrvik, “Heart rate recovery is more strongly associated with the metabolic syndrome, waist circumference, and insulin sensitivity in women than in men among the elderly in the general population,” American Heart Journal, vol. 154, no. 3, pp. 460.e1–460.e7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Morshedi-Meibodi, M. G. Larson, D. Levy, C. J. O'Donnell, and R. S. Vasan, “Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study),” American Journal of Cardiology, vol. 90, no. 8, pp. 848–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Ross, I. Janssen, J. Dawson et al., “Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial,” Obesity Research, vol. 12, no. 5, pp. 789–798, 2004. View at Google Scholar · View at Scopus
  36. V. van Harmelen, F. Lönnqvist, A. Thörne et al., “Noradrenaline-induced lipolysis in isolated mesenteric, omental and subcutaneous adipocytes from obese subjects,” International Journal of Obesity, vol. 21, no. 11, pp. 972–979, 1997. View at Google Scholar · View at Scopus
  37. A. Tchernof, C. Bélanger, A.-S. Morisset et al., “Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution,” Diabetes, vol. 55, no. 5, pp. 1353–1360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Nannipieri, A. Bonotti, M. Anselmino et al., “Pattern of expression of adiponectin receptors in human adipose tissue depots and its relation to the metabolic state,” International Journal of Obesity, vol. 31, no. 12, pp. 1843–1848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Izquierdo, J. Ibañez, J. A. L. Calbet et al., “Cytokine and hormone responses to resistance training,” European Journal of Applied Physiology, vol. 107, no. 4, pp. 397–409, 2009. View at Publisher · View at Google Scholar
  40. A.-L. Borel, J.-A. Nazare, J. Smith et al., “Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program,” Obesity, vol. 20, no. 6, pp. 1223–1233, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. J. H. Goedecke, N. S. Levitt, E. V. Lambert et al., “Differential effects of abdominal adipose tissue distribution on insulin sensitivity in black and white South African women,” Obesity, vol. 17, no. 8, pp. 1506–1512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Wener, A. A. Sandberg, L. Scherlis, J. Dvordin, and A. M. Master, “The electrocardiographic response to the standard 2-step exercise test,” Canadian Medical Association Journal, vol. 68, no. 4, pp. 368–374, 1953. View at Google Scholar
  43. A. S. Santo and L. A. Golding, “Predicting maximum oxygen uptake from a modified 3-minute step test,” Research Quarterly for Exercise and Sport, vol. 74, no. 1, pp. 110–115, 2003. View at Google Scholar · View at Scopus
  44. S. Hanssens, R. Luyten, C. Watthy et al., “Evaluation of a comprehensive rehabilitation program for post-treatment patients with cancer,” Oncology Nursing Forum, vol. 38, no. 6, pp. E418–E424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. J. Petrella, J. J. Koval, D. A. Cunningham, and D. H. Paterson, “A self-paced step test to predict aerobic fitness in older adults in the primary care clinic,” Journal of the American Geriatrics Society, vol. 49, no. 5, pp. 632–638, 2001. View at Publisher · View at Google Scholar · View at Scopus