Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2015, Article ID 298107, 12 pages
http://dx.doi.org/10.1155/2015/298107
Review Article

Influence of CAG Repeat Polymorphism on the Targets of Testosterone Action

1Division of Endocrinology, Department of Clinical and Molecular Sciences, Umberto I Hospital, Polytechnic University of Marche, Via Conca 71, 60126 Ancona, Italy
2Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology, and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
3Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome “La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy

Received 1 April 2015; Accepted 9 August 2015

Academic Editor: Kazuhiro Shiizaki

Copyright © 2015 Giacomo Tirabassi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Tirabassi, A. Biagioli, and G. Balercia, “Bone benefits of testosterone replacement therapy in male hypogonadism,” Panminerva Medica, vol. 56, no. 2, pp. 151–163, 2014. View at Google Scholar · View at Scopus
  2. G. Tirabassi, N. D. Muti, G. Corona, M. Maggi, and G. Balercia, “Androgen receptor gene CAG repeat polymorphism regulates the metabolic effects of testosterone replacement therapy in male postsurgical hypogonadotropic hypogonadism,” International Journal of Endocrinology, vol. 2013, Article ID 816740, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Francomano, E. A. Greco, A. Lenzi, and A. Aversa, “CAG repeat testing of androgen receptor polymorphism: is this necessary for the best clinical management of hypogonadism?” Journal of Sexual Medicine, vol. 10, no. 10, pp. 2373–2381, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ferlin, L. Bartoloni, G. Rizzo, A. Roverato, A. Garolla, and C. Foresta, “Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility,” Molecular Human Reproduction, vol. 10, pp. 417–421, 2004. View at Google Scholar
  5. E. Esteban, N. Rodon, M. Via et al., “Androgen receptor CAG and GGC polymorphisms in Mediterraneans: repeat dynamics and population relationships,” Journal of Human Genetics, vol. 51, no. 2, pp. 129–136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Zitzmann and E. Nieschlag, “The CAG repeat polymorphism within the androgen receptor gene and maleness,” International Journal of Andrology, vol. 26, no. 2, pp. 76–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Y. M. Tse, V. W. S. Liu, W. S. B. Yeung, E. Y. L. Lau, E. H. Y. Ng, and P. C. Ho, “Molecular analysis of the androgen receptor gene in Hong Kong Chinese infertile men,” Journal of Assisted Reproduction and Genetics, vol. 20, no. 6, pp. 227–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. W. Pastuszak, N. Badhiwala, W. Song, L. I. Lipshultz, and M. Khera, “Androgen receptor CAG repeat length correlates with sexual function in men,” The Journal of Urology, vol. 187, no. 4S, article e328, 2012. View at Google Scholar
  9. C.-C. Liu, Y.-C. Lee, C.-J. Wang et al., “The impact of androgen receptor CAG repeat polymorphism on andropausal symptoms in different serum testosterone levels,” Journal of Sexual Medicine, vol. 9, no. 9, pp. 2429–2437, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Andersen, C. Guindalini, R. R. Santos-Silva, L. R. A. Bittencourt, and S. Tufik, “Androgen receptor CAG repeat polymorphism is not associated with erectile dysfunction complaints, gonadal steroids, and sleep parameters: data from a population-based survey,” Journal of Andrology, vol. 32, no. 5, pp. 524–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Härkönen, I. Huhtaniemi, J. Mäkinen et al., “The polymorphic androgen receptor gene CAG repeat, pituitary-testicular function and andropausal symptoms in ageing men,” International Journal of Andrology, vol. 26, no. 3, pp. 187–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Tirabassi, N. delli Muti, G. Corona, M. Maggi, and G. Balercia, “Androgen receptor gene CAG repeat polymorphism independently influences recovery of male sexual function after testosterone replacement therapy in postsurgical hypogonadotropic hypogonadism,” Journal of Sexual Medicine, vol. 11, no. 5, pp. 1302–1308, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Tirabassi, G. Corona, A. Biagioli et al., “Influence of androgen receptor CAG polymorphism on sexual function recovery after testosterone therapy in late-onset hypogonadism,” Journal of Sexual Medicine, vol. 12, no. 2, pp. 381–388, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. M. B. Shamsi, K. Kumar, and R. Dada, “Genetic and epigenetic factors: role in male infertility,” Indian Journal of Urology, vol. 27, no. 1, pp. 110–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Edwards, H. A. Hammond, L. Jin, C. T. Caskey, and R. Chakraborty, “Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups,” Genomics, vol. 12, no. 2, pp. 241–253, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Mifsud, C. K. S. Sim, H. Boettger-Tong et al., “Trinucleotide (CAG) repeat polymorphisms in the androgen receptor gene: molecular markers of risk for male infertility,” Fertility and Sterility, vol. 75, no. 2, pp. 275–281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Patrizio, D. G. B. Leonard, K.-L. Chen, S. Hernandez-Ayup, and A. O. Trounson, “Larger trinucleotide repeat size in the androgen receptor gene of infertile men with extremely severe oligozoospermia,” Journal of Andrology, vol. 22, no. 3, pp. 444–448, 2001. View at Google Scholar · View at Scopus
  18. E. M. Lange, A. V. Sarma, A. Ray et al., “The androgen receptor CAG and GGN repeat polymorphisms and prostate cancer susceptibility in African-American men: results from the Flint Men's Health Study,” Journal of Human Genetics, vol. 53, no. 3, pp. 220–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. L. Giwercman, C. Xu, S. Arver, A. Pousette, and R. Reneland, “No association between the androgen receptor gene CAG repeat and impaired sperm production in Swedish men,” Clinical Genetics, vol. 54, pp. 435–436, 1998. View at Google Scholar
  20. S. von Eckardstein, A. Syska, J. Gromoll, A. Kamischke, M. Simoni, and E. Nieschlag, “Inverse correlation between sperm concentration and number of androgen receptor CAG repeats in normal men,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 6, pp. 2585–2590, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Castro-Nallar, K. Bacallao, A. Parada-Bustamante et al., “Androgen receptor gene CAG and GGN repeat polymorphisms in Chilean men with primary severe spermatogenic failure,” Journal of Andrology, vol. 31, no. 6, pp. 552–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. A. Nenonen, A. Giwercman, E. Hallengren, and Y. L. Giwercman, “Non-linear association between androgen receptor cag repeat length and risk of male subfertility—a meta-analysis,” International Journal of Andrology, vol. 34, no. 4, pp. 327–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Nenonen, C. Björk, P.-A. Skjaerpe et al., “CAG repeat number is not inversely associated with androgen receptor activity in vitro,” Molecular Human Reproduction, vol. 16, no. 3, pp. 153–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. T. Han, J. Ran, X. P. Ding et al., “Cytogenetic and molecular analysis of infertile Chinese men: karyotypic abnormalities, Y-chromosome microdeletions, and CAG and GGN repeat polymorphisms in the androgen receptor gene,” Genetics and Molecular Research, vol. 12, no. 3, pp. 2215–2226, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Lund, V. Juvonen, J. Lähdetie, K. Aittomäki, J. S. Tapanainen, and M.-L. Savontaus, “A novel sequence variation in the transactivation regulating domain of the androgen receptor in two infertile Finnish men,” Fertility and Sterility, vol. 79, supplement 3, pp. 1647–1648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Buchanan, M. Yang, A. Cheong et al., “Structural and functional consequences of glutamine tract variation in the androgen receptor,” Human Molecular Genetics, vol. 13, no. 16, pp. 1677–1692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Wilding, “The importance of steroid hormones in prostate cancer,” Cancer Surveys, vol. 14, pp. 113–130, 1992. View at Google Scholar · View at Scopus
  28. J. Frick, A. Jungwirth, and E. Rovan, “Androgen and the prostate,” in Testosterone Action, Deficiency, Substitution, pp. 260–291, Springer, 2nd edition, 1998. View at Google Scholar
  29. P. Kazemi-Esfarjani, M. A. Trifiro, and L. Pinsky, “Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies,” Human Molecular Genetics, vol. 4, no. 4, pp. 523–527, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. K. A. Nelson and J. S. Witte, “Androgen receptor CAG repeats and prostate cancer,” The American Journal of Epidemiology, vol. 155, no. 10, pp. 883–890, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Giovannucci, M. J. Stampfer, K. Krithivas et al., “The CAG repeat within the androgen receptor gene and its relationship to prostate cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 3320–3323, 1997. View at Google Scholar
  32. J. M. Hakimi, M. P. Schoenberg, R. H. Rondinelli, S. Piantadosi, and E. R. Barrack, “Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer,” Clinical Cancer Research, vol. 3, no. 9, pp. 1599–1608, 1997. View at Google Scholar · View at Scopus
  33. S. Yoo, A. Pettersson, K. M. Jordahl et al., “Androgen receptor CAG repeat polymorphism and risk of TMPRSS2:ERG-positive prostate cancer,” Cancer Epidemiology Biomarkers & Prevention, vol. 23, no. 10, pp. 2027–2031, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Mao, J. Li, X. Xu et al., “Involvement of different mechanisms for the association of CAG repeat length polymorphism in androgen receptor gene with prostate cancer,” American Journal of Cancer Research, vol. 4, no. 6, pp. 886–896, 2014. View at Google Scholar
  35. G. A. Coetzee and R. K. Ross, “Re: prostate cancer and the androgen receptor,” Journal of the National Cancer Institute, vol. 86, no. 11, pp. 872–873, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. M. P. Zeegers, L. A. L. M. Kiemeney, A. M. Nieder, and H. Ostrer, “How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk?” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 11, pp. 1765–1771, 2004. View at Google Scholar · View at Scopus
  37. M. Gu, X. Dong, X. Zhang, and W. Niu, “The CAG repeat polymorphism of androgen receptor gene and prostate cancer: a meta-analysis,” Molecular Biology Reports, vol. 39, no. 3, pp. 2615–2624, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-H. Sun and S.-A. Lee, “Association between CAG repeat polymorphisms and the risk of prostate cancer: a meta-analysis by race, study design and the number of (CAG)n repeat polymorphisms,” International Journal of Molecular Medicine, vol. 32, no. 5, pp. 1195–1203, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Correa-Cerro, G. Wöhr, J. Haüssler et al., “(CAG)nCAA and GGN repeats in the human androgen receptor gene are not associated with prostate cancer in a French-German population,” European Journal of Human Genetics, vol. 7, no. 3, pp. 357–362, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Edwards, M. D. Badzioch, R. Minter et al., “Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival,” International Journal of Cancer, vol. 84, no. 5, pp. 458–465, 1999. View at Publisher · View at Google Scholar
  41. O. Bratt, Å. Borg, U. Kristoffersson, R. Lundgren, Q.-X. Zhang, and H. Olsson, “CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk,” British Journal of Cancer, vol. 81, no. 4, pp. 672–676, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Lindström, J. Ma, D. Altshuler et al., “A large study of Androgen Receptor germline variants and their relation to sex hormone levels and prostate cancer risk. results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 9, pp. E121–E127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Giovannucci, E. A. Platz, M. J. Stampfer et al., “The CAG repeat within the androgen receptor gene and benign prostatic hyperplasia,” Urology, vol. 53, no. 1, pp. 121–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Mitsumori, A. Terai, H. Oka et al., “Androgen receptor CAG repeat length polymorphism in benign prostatic hyperplasia (BPH): correlation with adenoma growth,” Prostate, vol. 41, no. 4, pp. 253–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Corona, G. Rastrelli, A. Morelli, L. Vignozzi, E. Mannucci, and M. Maggi, “Hypogonadism and metabolic syndrome,” Journal of Endocrinological Investigation, vol. 34, no. 7, pp. 557–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Corona, G. Rastrelli, E. Maseroli et al., “Low testosterone syndrome protects subjects with high cardiovascular risk burden from major adverse cardiovascular events,” Andrology, vol. 2, no. 5, pp. 741–747, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Haring, F. Ernst, C. Schurmann et al., “The androgen receptor CAG repeat polymorphism as a risk factor of low serum testosterone and its cardiometabolic effects in men,” International Journal of Andrology, vol. 35, no. 4, pp. 511–520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Alevizaki, A. T. Cimponeriu, M. Garofallaki et al., “The androgen receptor gene CAG polymorphism is associated with the severity of coronary artery disease in men,” Clinical Endocrinology, vol. 59, no. 6, pp. 749–755, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Goutou, C. Sakka, N. Stakias, I. Stefanidis, and G. N. Koukoulis, “AR CAG repeat length is not associated with serum gonadal steroids and lipid levels in healthy men,” International Journal of Andrology, vol. 32, no. 6, pp. 616–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Trzmiel-Bira, A. Filus, J. Kuliczkowska-Płaksej et al., “The CAG repeat polymorphism in androgen receptor gene repeat and frequency of chosen parameters of metabolic syndrome in 45–65 aged men in Wroclaw population,” Endokrynologia Polska, vol. 59, no. 6, pp. 477–482, 2008. View at Google Scholar · View at Scopus
  51. M. Zitzmann, J. Gromoll, A. von Eckardstein, and E. Nieschlag, “The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum concentrations of leptin and insulin in men,” Diabetologia, vol. 46, no. 1, pp. 31–39, 2003. View at Google Scholar · View at Scopus
  52. Z. Pausova, M. Abrahamowicz, A. Mahboubi et al., “Functional variation in the androgen-receptor gene is associated with visceral adiposity and blood pressure in male adolescents,” Hypertension, vol. 55, no. 3, pp. 706–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. R. D. Stanworth, D. Kapoor, K. S. Channer, and T. H. Jones, “Androgen receptor CAG repeat polymorphism is associated with serum testosterone levels, obesity and serum leptin in men with type 2 diabetes,” European Journal of Endocrinology, vol. 159, no. 6, pp. 739–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Zitzmann and E. Nieschlag, “Androgen receptor gene CAG repeat length and body mass index modulate the safety of long-term intramuscular testosterone undecanoate therapy in hypogonadal men,” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 10, pp. 3844–3853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Mouritsen, C. P. Hagen, K. Sørensen et al., “Androgen receptor CAG repeat length is associated with body fat and serum SHBG in boys: a prospective cohort study,” Journal of Clinical Endocrinology and Metabolism, vol. 98, no. 3, pp. E605–E609, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. J. G. P.-G. Lez, A. Guadalupe-Grau, F. G. Rodríguez-González et al., “Androgen receptor gene polymorphisms and the fat-bone axis in young men and women,” Journal of Andrology, vol. 33, no. 4, pp. 644–650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. P. G. Voorhoeve, W. van Mechelen, A. G. Uitterlinden, H. A. Delemarre-Van De Waal, and S. W. J. Lamberts, “Androgen receptor gene CAG repeat polymorphism in longitudinal height and body composition in children and adolescents,” Clinical Endocrinology, vol. 74, no. 6, pp. 732–735, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Lapauw, S. Goemaere, P. Crabbe, J. M. Kaufman, and J. B. Ruige, “Is the effect of testosterone on body composition modulated by the androgen receptor gene CAG repeat polymorphism in elderly men?” European Journal of Endocrinology, vol. 156, no. 3, pp. 395–401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. T. L. Nielsen, C. Hagen, K. Wraae et al., “The impact of the CAG repeat polymorphism of the androgen receptor gene on muscle and adipose tissues in 20-29-year-old Danish men: odense androgen study,” European Journal of Endocrinology, vol. 162, no. 4, pp. 795–804, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Walsh, J. M. Zmuda, J. A. Cauley et al., “Androgen receptor CAG repeat polymorphism is associated with fat-free mass in men,” Journal of Applied Physiology, vol. 98, no. 1, pp. 132–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Tirabassi, N. delli Muti, E. Buldreghini, A. Lenzi, and G. Balercia, “Central body fat changes in men affected by post-surgical hypogonadotropic hypogonadism undergoing testosterone replacement therapy are modulated by androgen receptor CAG polymorphism,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 24, no. 8, pp. 908–913, 2014. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Guadalupe-Grau, F. G. Rodríguez-González, J. G. Ponce-González et al., “Bone mass and the CAG and GGN androgen receptor polymorphisms in young men,” PLoS ONE, vol. 5, no. 7, Article ID e11529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Remes, S. B. Väisänen, A. Mahonen et al., “Aerobic exercise and bone mineral density in middle-aged Finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor α gene polymorphisms,” Bone, vol. 32, no. 4, pp. 412–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. V.-V. Välimäki, K. Piippo, S. Välimäki, E. Löyttyniemi, K. Kontula, and M. J. Välimäki, “The relation of the Xbal and Pvull polymorphisms of the estrogen receptor gene and the CAG repeat polymorphism of the androgen receptor gene to peak bone mass and bone turnover rate among young healthy men,” Osteoporosis International, vol. 16, no. 12, pp. 1633–1640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. B. L. Langdahl, L. Stenkjær, M. Carstens, C. L. Tofteng, and E. F. Eriksen, “A CAG repeat polymorphism in the androgen receptor gene is associated with reduced bone mass and increased risk of osteoporotic fractures,” Calcified Tissue International, vol. 73, no. 3, pp. 237–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Stiger, H. Brändström, P. Gillberg et al., “Association between repeat length of exon 1 CAG microsatellite in the androgen receptor and bone density in men is modulated by sex hormone levels,” Calcified Tissue International, vol. 82, no. 6, pp. 427–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Zitzmann, M. Brune, B. Kornmann, J. Gromoll, R. Junker, and E. Nieschlag, “The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males,” Clinical Endocrinology, vol. 55, no. 5, pp. 649–657, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Van Pottelbergh, S. Lumbroso, S. Goemaere, C. Sultan, and J. M. Kaufman, “Lack of influence of the androgen receptor gene CAG-repeat polymorphism on sex steroid status and bone metabolism in elderly men,” Clinical Endocrinology, vol. 55, no. 5, pp. 659–666, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. A. M. Kenny, D. McGee, C. Joseph, J. Covault, C. Abreu, and L. G. Raisz, “Lack of association between androgen receptor polymorphisms and bone mineral density or physical function in older men,” Endocrine Research, vol. 31, no. 4, pp. 285–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Tirabassi, N. delli Muti, A. Gioia, A. Biagioli, A. Lenzi, and G. Balercia, “Effects of testosterone replacement therapy on bone metabolism in male post-surgical hypogonadotropic hypogonadism: focus on the role of androgen receptor CAG polymorphism,” Journal of Endocrinological Investigation, vol. 37, no. 4, pp. 393–400, 2014. View at Publisher · View at Google Scholar · View at Scopus
  71. M. J. Garner, M. C. Turner, P. Ghadirian, and D. Krewski, “Epidemiology of testicular cancer: an overview,” International Journal of Cancer, vol. 116, no. 3, pp. 331–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Krausz and L. H. J. Looijenga, “Genetic aspects of testicular germ cell tumors,” Cell Cycle, vol. 7, no. 22, pp. 3519–3524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Giannandrea, D. Paoli, I. Figà-Talamanca, F. Lombardo, A. Lenzi, and L. Gandini, “Effect of endogenous and exogenous hormones on testicular cancer: the epidemiological evidence,” International Journal of Developmental Biology, vol. 57, no. 2–4, pp. 255–263, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. E. R.-D. Meyts and N. E. Skakkebæk, “The possible role of sex hormones in the development of testicular cancer,” European Urology, vol. 23, no. 1, pp. 54–61, 1993. View at Google Scholar · View at Scopus
  75. E. R.-D. Meyts, H. Leffers, G. Daugaard et al., “Analysis of the polymorphic CAG repeat length in the androgen receptor gene in patients with testicular germ cell cancer,” International Journal of Cancer, vol. 102, no. 2, pp. 201–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Giwercman, K. B. Lundin, J. Eberhard et al., “Linkage between androgen receptor gene CAG trinucleotide repeat length and testicular germ cell cancer histological type and clinical stage,” European Journal of Cancer, vol. 40, no. 14, pp. 2152–2158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. R. A. Irvine, H. Ma, M. C. Yu, R. K. Ross, M. R. Stallcup, and G. A. Coetzee, “Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length,” Human Molecular Genetics, vol. 9, no. 2, pp. 267–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Garolla, A. Ferlin, C. Vinanzi et al., “Molecular analysis of the androgen receptor gene in testicular cancer,” Endocrine-Related Cancer, vol. 12, no. 3, pp. 645–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. W. Kristiansen, E. L. Aschim, J. M. Andersen, O. Witczak, S. D. Fosså, and T. B. Haugen, “Variations in testosterone pathway genes and susceptibility to testicular cancer in Norwegian men,” International Journal of Andrology, vol. 35, no. 6, pp. 819–827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Grassetti, F. Giannandrea, D. Paoli et al., “Androgen receptor polymorphisms and testicular cancer risk,” Andrology, vol. 3, no. 1, pp. 27–33, 2015. View at Publisher · View at Google Scholar · View at Scopus
  81. M. L. Biggs, M. D. Davis, D. L. Eaton et al., “Serum organochlorine pesticide residues and risk of testicular germ cell carcinoma: a population-based case-control study,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 8, pp. 2012–2018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. F. Luxen, “Gender differences in dominance and affiliation during a demanding interaction,” The Journal of Psychology, vol. 139, no. 4, pp. 331–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. J. P. Byrnes, D. C. Miller, and W. D. Schafer, “Gender differences in risk taking: a meta-analysis,” Psychological Bulletin, vol. 125, no. 3, pp. 367–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. R. C. Kessler, K. A. McGonagle, M. Swartz, D. G. Blazer, and C. B. Nelson, “Sex and depression in the National Comorbidity Survey I: lifetime prevalence, chronicity and recurrence,” Journal of Affective Disorders, vol. 29, no. 2-3, pp. 85–96, 1993. View at Publisher · View at Google Scholar · View at Scopus
  85. A. S. Aromäki, R. E. Lindman, and C. J. P. Eriksson, “Testosterone, aggressiveness, and antisocial personality,” Aggressive Behavior, vol. 25, no. 2, pp. 113–123, 1999. View at Google Scholar · View at Scopus
  86. D. B. O'Connor, J. Archer, W. M. Hair, and F. C. W. Wu, “Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men,” Physiology and Behavior, vol. 75, no. 4, pp. 557–566, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. C. S. Choong and E. M. Wilson, “Trinucleotide repeats in the human androgen receptor: a molecular basis for disease,” Journal of Molecular Endocrinology, vol. 21, no. 3, pp. 235–257, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. L. Simmons and J. R. Roney, “Variation in CAG repeat length of the androgen receptor gene predicts variables associated with intrasexual competitiveness in human males,” Hormones and Behavior, vol. 60, no. 3, pp. 306–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. J. R. Roney, Z. L. Simmons, and A. W. Lukaszewski, “Androgen receptor gene sequence and basal cortisol concentrations predict men's hormonal responses to potential mates,” Proceedings of the Royal Society B: Biological Sciences, vol. 277, no. 1678, pp. 57–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Vermeersch, G. T'Sjoen, J. M. Kaufman, J. Vincke, and M. Van Houtte, “Testosterone, androgen receptor gene CAG repeat length, mood and behaviour in adolescent males,” European Journal of Endocrinology, vol. 163, no. 2, pp. 319–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Schneider, K. Nienhaus, J. Gromoll, G. Heuft, E. Nieschlag, and M. Zitzmann, “Depressive symptoms in men aged 50 years and older and their relationship to genetic androgen receptor polymorphism and sex hormone levels in three different samples,” American Journal of Geriatric Psychiatry, vol. 19, no. 3, pp. 274–283, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Schneider, M. Zitzmann, J. Gromoll, K. H. Ladwig, and K. Berger, “The relation between sex hormone levels, the androgen receptor CAGn-polymorphism and depression and mortality in older men in a community study,” Psychoneuroendocrinology, vol. 38, no. 10, pp. 2083–2090, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. S. N. Seidman, A. B. Araujo, S. P. Roose, and J. B. McKinlay, “Testosterone level, androgen receptor polymorphism, and depressive symptoms in middle-aged men,” Biological Psychiatry, vol. 50, no. 5, pp. 371–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. J. S. Sankar and E. Hampson, “Testosterone levels and androgen receptor gene polymorphism predict specific symptoms of depression in young men,” Gender Medicine, vol. 9, no. 4, pp. 232–243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Rajender, G. Pandu, J. D. Sharma, K. P. C. Gandhi, L. Singh, and K. Thangaraj, “Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior,” International Journal of Legal Medicine, vol. 122, no. 5, pp. 367–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Aluja, L. F. García, A. Blanch, and J. Fibla, “Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype,” Psychiatric Genetics, vol. 21, no. 5, pp. 229–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Cheng, C.-J. Hong, D.-L. Liao, and S.-J. Tsai, “Association study of androgen receptor CAG repeat polymorphism and male violent criminal activity,” Psychoneuroendocrinology, vol. 31, no. 4, pp. 548–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. E. G. Jönsson, C. von Gertten, J. P. Gustavsson et al., “Androgen receptor trinucleotide repeat polymorphism and personality traits,” Psychiatric Genetics, vol. 11, no. 1, pp. 19–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. D. E. Comings, C. Chen, S. Wu, and D. Muhleman, “Association of the androgen receptor gene (AR) with ADHD and conduct disorder,” NeuroReport, vol. 10, no. 7, pp. 1589–1592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Kumar, “Role of androgen receptor polyQ chain elongation in Kennedy's disease and use of natural osmolytes as potential therapeutic targets,” IUBMB Life, vol. 64, no. 11, pp. 879–884, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Katsuno, H. Banno, K. Suzuki, H. Adachi, F. Tanaka, and G. Sobue, “Clinical features and molecular mechanisms of spinal and bulbar muscular atrophy (SBMA),” Advances in Experimental Medicine and Biology, vol. 685, pp. 64–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Kumar, H. Atamna, M. N. Zakharov, S. Bhasin, S. H. Khan, and R. Jasuja, “Role of the androgen receptor CAG repeat polymorphism in prostate cancer, and spinal and bulbar muscular atrophy,” Life Sciences, vol. 88, no. 13-14, pp. 565–571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. F. Piccioni, S. Simeoni, I. Andriola et al., “Polyglutamine tract expansion of the androgen receptor in a motoneuronal model of spinal and bulbar muscular atrophy,” Brain Research Bulletin, vol. 56, no. 3-4, pp. 215–220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. N. B. Nedelsky, M. Pennuto, R. B. Smith et al., “Native functions of the androgen receptor are essential to pathogenesis in a drosophila model of spinobulbar muscular atrophy,” Neuron, vol. 67, no. 6, pp. 936–952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Simeoni, M. A. Mancini, D. L. Stenoien et al., “Motoneuronal cell death is not correlated with aggregate formation of androgen receptors containing an elongated polyglutamine tract,” Human Molecular Genetics, vol. 9, no. 1, pp. 133–144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  106. M. L. Eisenberg, T.-C. Hsieh, A. W. Pastuszak et al., “The relationship between anogenital distance and the androgen receptor CAG repeat length,” Asian Journal of Andrology, vol. 15, no. 2, pp. 286–289, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. N. L. Chamberlain, E. D. Driver, and R. L. Miesfeld, “The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function,” Nucleic Acids Research, vol. 22, no. 15, pp. 3181–3186, 1994. View at Publisher · View at Google Scholar · View at Scopus