Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2015 (2015), Article ID 591729, 9 pages
http://dx.doi.org/10.1155/2015/591729
Review Article

The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism

Department of Psychiatry, College of Medicine, The Catholic University of Korea, Suwon, Seoul 442723, Republic of Korea

Received 31 December 2014; Revised 24 February 2015; Accepted 24 February 2015

Academic Editor: Michael Horowitz

Copyright © 2015 Tae Won Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity.

1. Introduction

Human beings sleep for approximately one-third of their lifetime, but the endogenous mechanisms underlying sleep and its role in homeostasis remain to be fully elucidated. The circadian clock is an autonomous mechanism that prepares an organism to interact with external stimuli on cell, organ, and organism levels, according to a transcription-translation feedback loop [1]. The circadian system is characterized by an endogenous rhythmicity (i.e., independent oscillation) and an ability to shift its timing in accordance with external factors. The suprachiasmatic nucleus (SCN), located in the anterior hypothalamus above the optic chiasm, constitutes the major site of circadian rhythm regulation. Neuronal firing within the SCN propagates circadian rhythms and is also involved in coordinating the peripheral clock system. In addition to the circadian timing system, sleep stage, arousal level, rapid eye movement (REM), and slow-wave sleep are other important factors in circadian rhythms. The Process S and Process C models represent attempts to delineate the mechanism underlying sleep regulation [2]. In the Process S model, a homeostatic drive for sleep increases during waking and decreases during sleep. The Process C model refers to a propensity for circadian modulation during sleep. The interaction of the processes described by two-process model determines sleep quality and duration and arousal and performance levels. The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation of these hormones is influenced by interactions between the effects of sleep and the intrinsic circadian system such that adverse health effects due to hormonal or metabolic imbalances may occur when the sleep cycle and intrinsic timing system are unsynchronized. In this review, we discuss the association between sleep, metabolism, and the levels of various hormones, particularly in terms of the effects of sleep disturbance and circadian disruption on hormonal and metabolic function.

2. Sleep and Hormones

Several hormones are involved in sleep and circadian rhythmicity.

Growth hormone levels are increased during sleep and peak immediately subsequent to sleep onset [3, 4]. In a previous study, growth hormone levels, measured every 30 s during sleep, increased significantly during slow-wave sleep (SWS) compared with stages 1 and 2 and REM sleep [5]. Growth hormone is intermittently secreted during sleep, which could relate to the cyclic nature of SWS [6]. Posttraumatic stress disorder patients characterized by frequently disturbed sleep exhibited lower nighttime growth hormone plasma levels compared with healthy subjects [7]. Growth hormone replacement therapy, for growth hormone-deficient pediatric patients, enhanced EEG slow oscillation [8].

Melatonin exhibits robust circadian rhythmicity. Studies using constant routine and forced desynchrony protocols demonstrate that melatonin levels are high during the biological night versus day [9, 10]. The melatonin secretion pathway projects from the SCN to the paraventricular nucleus (PVN) and on to the upper thoracic spinal cord, superior cervical ganglion, and pineal gland [11]. Melatonin plays an important role in regulating human sleep. Administration of sustained-release or transdermal formulation melatonin reduces sleep latency, increases total sleep time, and improves sleep maintenance [12, 13]. Melatonin administration increases sleep spindle frequency on EEG [13]. Beta-blockers possess melatonin-suppressing properties; in patients taking atenolol in conjunction with melatonin, total wake time and sleep were improved [14]. In a study using subjects with cervical spinal cord injury and impaired melatonin production, sleep efficiency was improved compared with a control group with normal melatonin levels [15]. In another study, the average sleep efficiency of healthy subjects administered exogenous melatonin was increased by 88% during the circadian night, at which time endogenous melatonin was present. Melatonin did not affect sleep initiation or core body temperature. The efficacy of melatonin perseverated across the study and did not significantly affect the proportion of SWS or REM sleep [16]. Melatonin also confers a chronobiotic effect and can facilitate maintenance of an optimal sleep wake cycle [17, 18]. Blind subjects with free-running circadian rhythm disorder were entrained to a 24 h rhythm following melatonin administration.

Using a constant routine protocol, thyroid-stimulating hormone (TSH) concentrations reached their maximum and minimum in the middle of the biological night and biological afternoon, respectively [19, 20]. Total triiodothyronine (T3) and thyroxine (T4) concentrations were not associated with circadian rhythmicity [19]. A negative correlation between TSH levels and SWS has been reported [21, 22].

Cortisol exhibits circadian rhythmicity; its level rises rapidly in the middle of the biological night and peaks during the biological morning [23, 24]. Cortisol is released in a pulsatile manner throughout the 24 h with a circhoral ultradian rhythm. The pulsatile secretion of gonadotropin releasing hormone prevents the receptor desensitization [25, 26]. The SCN is at the center of this rhythm regulation spectrum. The hormonal pathway underlying this regulation projects from the SCN to the sub-PVN and dorsomedial nucleus of the hypothalamus (DMH) and then projects to the medial parvocellular part of the PVN, which stimulates corticotropin releasing hormone (CRH) [27]. The neuronal pathway involved in cortisol regulation projects from the SCN to the PVN and then to the adrenal cortex through the spinal cord [27]. Cortisol levels are reduced during SWS; a temporal relationship between SWS and decreased cortisol levels has also been reported. Intravenous infusion of cortisol increased SWS and decreased REM sleep; concerning the mechanism underlying this effect, Steiger reported that cortisol infusion suppresses CRH, thereby decreasing SWS in accordance with a negative feedback mechanism [28].

Ghrelin and leptin promote and suppress food intake, respectively [29, 30]. Ghrelin levels increase prior to habitual meal times and decrease thereafter [31, 32]. Several studies have evaluated the relationship between sleep and hormone levels [24]. Increased growth hormone levels and proportion of SWS and decreased REM sleep were observed following intravenous injection of ghrelin [33]. In a rodent study, SWS increased and REM sleep decreased following leptin infusion [34]. Elderly males administered ghrelin were subsequently characterized by an increased proportion of stage 2 and SWS sleep and decreased stage 1 and REM sleep [35]. Increased ghrelin levels during early-stage sleep and a blunted ghrelin response during sleep deprivation were also reported [36]. However, in another study no significant relationship between ghrelin levels and sleep stage was reported [37]. Concerning leptin, in one study, levels were increased during the biological night and peaked during the biological morning [38]. But Scheer et al. reported no fluctuations in leptin levels according to circadian rhythms [24].

3. Circadian Regulation of Carbohydrate

Daily oscillations in glucose metabolism have been consistently reported. Glucose utilization increases commensurate with physical activity and is greater during waking versus sleep. Evidence suggests that other factors may also be associated with oscillations in glucose metabolism, including circadian regulatory mechanisms. Suprachiasmatic nucleus-lesioned rats did not exhibit 24 h rhythmic variations in basal glucose concentrations [39]. In a recent systemic review, the SCN-PVN-autonomic nervous system axis played a critical role in the daily rhythms of hepatic glucose output [40]. Glucose homeostasis involves the coordination of exogenous (digestion and absorption) and endogenous (gluconeogenesis and utilization) mechanisms. The hepatocyte circadian clock is known to regulate glucose homeostasis. Several studies have investigated the genes associated with the cellular circadian rhythms involved in glucose metabolism. ClockΔ19 mutant mice are characterized by decreased oscillation in hepatic glycogen levels and glycogen synthase expression and activity [41]. In BMAL1 knockout mice, rhythmic expression of hepatic glucose regulatory genes such as PEPCK is absent, and exaggerated glucose clearance is observed [42]. Cryptochrome CRY1 and cryptochrome CRY2 are rhythmically expressed in the liver, which modulates hepatic gluconeogenesis. Elevated CRY1 expression during the night-day transition reduced fasting gluconeogenic gene expression commensurate with increased intracellular cAMP concentrations [43]. A relationship between melatonin and glucose metabolism has also been reported. Melatonin receptor knockout mice continue to express circadian PER1 and exhibit increased insulin secretion from the islets and altered insulin transcript circadian rhythms [44]. Another in vivo and in vitro study revealed that melatonin incubation enhanced glucagon expression and secretion; long-term oral administration of melatonin led to plasma glucagon elevation in rats [45].

4. Circadian Regulation of Lipid

Lipid metabolism also has daily rhythms. In rats, cholesterol and lipid absorption increase and decrease during high- (i.e., dark phase) and low-activity periods, respectively; such diurnal variation in lipid absorption is not observed in ClockΔ19 mutant mice [46]. Several different genes involved in lipid metabolism in the intestine, encoding apolipoprotein B (Apob), intestinal fatty acid binding protein (Fabp), and intestinal microsomal triglyceride transport protein (Mtp), exhibit circadian rhythms [47, 48]. Inhibition of clock and PER2 increased alcohol-induced intestinal hyperpermeability, which suggests a role for circadian genes in intestinal permeability regulation [49]. Circadian clock mutant mice exhibit low and nonrhythmic plasma levels of free fatty acids and glycerol, decreased lipolysis, and increased sensitivity to fasting. Circadian clock disruption promotes the accumulation of triglycerides in white adipose tissue and adipocyte hypertrophy [50]. Clock mutant mice showed hyperlipidemia, hepatic steatosis, hypertriglyceridemia, and hypercholesterolemia [51]. The daily oscillation of plasma triglyceride was disrupted in BMAL1 mutant mice [52]. BMAL1 also plays an important role in adipocyte differentiation and lipogenesis in rodents study [53]. BMAL1 mutant mice showed elevated respiratory quotient value, which indicated that BMAL1 was involved in the utilization of fat as an energy source [54]. Nocturnin (a clock-regulated deadenylase) knockout mice have reduced chylomicron transit into the plasma following the ingestion of dietary lipids [55].

5. Impact of Sleep Disturbance on Hormones and Metabolism

Increased food intake and decreased physical activity are both major factors in the development of obesity; epidemiological studies demonstrate that worldwide obesity prevalence continues to increase. Sleep duration might also be associated with obesity development [56]. Sleep debt in humans may increase obesity risk [57]. According to a poll by the National Sleep Foundation, the mean sleep duration of American adults was 6 h 40 min in 2008 compared with 8 h 30 min in 1960 [58]. Cross-sectional studies demonstrate a positive correlation between sleep deprivation and obesity risk [59, 60]. Several prospective studies provide strong evidence for a causal relationship between sleep deficit and obesity. In a UK study, shortened sleep duration in toddlers (<10.5 h/day) could increase obesity risk at 7 years of age [61]. Sugimori et al. evaluated sleep and body mass index (BMI) in pediatric patients at 3 and 6 years of age; <9 h of sleep was associated with increased obesity risk in males [62]. In a 5-year follow-up study, sleep deprivation was associated with a higher BMI 5 years later in then-adolescents [63]. Short sleep duration in childhood was associated with being overweight 3 years later [64]. In a longitudinal study, the relationship between sleep duration and long-term changes in visceral adiposity was investigated. Visceral adipose tissue (VAT) was assessed using computed tomography during the 6-year follow-up. Baseline short (<6 h/day) and long (>9 h/day) sleepers gained significantly more VAT; furthermore, changing from being a short to average sleeper protected against VAT gain [65]. These studies indicate that there is an association between sleep deprivation and obesity risk. In another study, sleep duration and dietary quality in adolescents were correlated; insufficient sleepers exhibited lower diet quality index scores compared with those sleeping for an optimal duration (≥9 h) [66].

Sleep deprivation is a risk factor for diabetes mellitus. An epidemiological study with an adult sample demonstrated an association between short sleep duration and diabetes mellitus risk [67]. Similarly, in a systemic review article, curtailed sleep duration was a risk factor for diabetes [68]. A laboratory study revealed an effect of sleep debt on metabolic and endocrine function [69]. Healthy young males were restricted to 4 h per night of bed time for six nights (sleep debt condition) followed by a seven-night 12 h bed time recovery period (sleep recovery condition). Glucose tolerance and thyrotropin concentrations were significantly lowered during sleep deprivation. Furthermore, evening cortisol concentration and sympathetic nervous system activity were increased during sleep deprivation, during which leptin levels were also at their lowest. The HOMA (homeostatic model assessment; insulin [mIU/L] glucose [mmol/L]/22.5) response was significantly higher in the debt versus recovery condition [70]. Increased HOMA levels are indicative of decreased glucose tolerance and/or insulin sensitivity. In a study comparing the effects of 4.5 and 8.5 h sleep conditions in healthy adults, phosphorylated Akt and total Akt response, which represent a critical step in the insulin-signaling pathway, were lowered during sleep deprivation [71]. The study also implied that sleep restriction resulted in insulin resistance at a cell-signaling level. The relationship between sleep duration and metabolic syndrome was explored in a Japanese study. Type 2 diabetes patients were divided into five groups according to sleep duration. Shorter and longer sleepers exhibited significantly more severe metabolic syndrome and other cardiovascular risk factors (U-shaped curve) [72]. To investigate the impact of sleep restriction on pediatric patients, a within-subjects, counterbalanced, crossover design was employed, with subjects increasing or decreasing time in bed by 1.5 h per night. In the increased sleep duration group food intake, fasting leptin levels, and bodyweight were all lowered [73]. In a sleep study using actigraphy, subjects slept for 1.4 h per night for 3 weeks, following which insulin sensitivity initially decreased and then recovered to baseline. Leptin concentration was reduced and bodyweight was unchanged [74]. Acute sleep restriction, for example, 4 h for 3 consecutive nights, reduced insulin sensitivity in healthy normal-weight adolescent males [75]. When adult subjects were restricted to two-thirds of their usual sleep time, their caloric intake was increased in the absence of alterations in energy expenditure or leptin and ghrelin concentrations [76]; 5 days of 4 hours of sleep was associated with increased glucose, insulin, cortisol, and leptin, decreased triglycerides, and no change in testosterone levels [77]. In another study, sleep restriction, to 4 h per night for 4 d, had no effect on glucose, insulin, or leptin profiles, with no evidence of increased insulin resistance [78].

In a randomized, crossover clinical study conducted by Spiegel et al., plasma leptin and ghrelin levels were measured and subjective hunger and appetite ratings during sleep deprivation and recovery obtained [57]. Subjects exhibited an 18% decrease in leptin (an anorexigenic hormone), 24% increase in ghrelin (an orexigenic hormone), 24% increase in hunger, and 23% increase in appetite when sleep was restricted to 4 h. Appetite for high carbohydrate food was increased by 32% during sleep deprivation; these data suggest that people will consume more calories when sleep-deprived due to increased hunger and decreased satiety. Another study explored the effects of sleep deprivation on energy intake. In a randomized crossover design, healthy volunteers slept for 5.5 or 8.5 h per night for 14 days [79]. Sleep-restricted subjects exhibited similar intake during regular meals but increased caloric consumption from snacks compared with the 8.5 h group. The average increase in snack-derived calories was approximately 220 kcal/day, suggesting that persistent sleep restriction could modify the amount, composition, and distribution of human food intake. Restriction to 6.5 h of bed time in adolescents was associated with increased consumption of high-calorie and glycemic index food [80]. The neuronal mechanisms underlying the effects of sleep restriction on food intake were investigated recently in a functional magnetic resonance imaging paradigm. Following five nights of 4 h bed time, healthy subjects were provided with healthy or unhealthy food during fasting. The response to unhealthy food stimuli was greater in brain reward and food-sensitive regions during sleep deprivation [81]. In another imaging study, sleep-deprived subjects exhibited decreased activity in appetite-sensitive regions of the frontal and insular cortices and increased amygdala activity during a food desirability rating task [82].

Even a single night of total sleep deprivation can influence energy expenditure and metabolism; in subjects with 24 h wakefulness, resting and postprandial energy expenditure were decreased; morning plasma ghrelin, nocturnal and daytime circulating thyrotropin, cortisol, and norepinephrine concentrations were increased. Morning postprandial plasma glucose concentrations were also lower compared with controls who slept for 8 h [83]. In a different study, one night of total sleep deprivation increased leptin levels but was not associated with alterations in adiponectin or cortisol levels or of blood pressure, heart rate, or hunger [84].

Reduced sleep quality could negatively impact glucose metabolism even if total sleep time is unchanged. Tasali et al. suppressed SWS in healthy subjects with acoustic stimuli of varying frequencies and intensities such that deep NREM sleep was substituted with shallow NREM sleep, without waking the subject [85]. When deep NREM was suppressed for 3 consecutive nights, insulin sensitivity decreased without an adequate compensatory increase in insulin. Therefore, glucose tolerance was decreased and diabetes risk commensurately increased. The magnitude of the decrease in insulin sensitivity was strongly correlated with the magnitude of the reduction in SWS. These data indicate a role for SWS in maintaining glucose homeostasis. Morning plasma glucose and serum insulin responses were significantly increased following selective SWS suppression in a similarly designed study [86].

Acute or chronic sleep deprivation may induce appetite dysregulation and raise the risk of weight gain, thereby leading to insulin resistance, glucose intolerance, and a concomitant increased risk of diabetes mellitus. In sleep-disordered patients, sleep disruption may result in a cumulative sleep deficit, leading to increased sympathetic nerve activity and elevated evening cortisol. In this scenario insulin resistance, weight gain, and diabetes could be caused [70].

6. Impact of Circadian Disruption on Hormones and Metabolism

The melatonin levels of shift workers during night work and daytime sleep were significantly lower compared with those of daytime workers, and morning serum cortisol after work and after sleep were also 24% and 43% lower [87]. Chronic reductions in melatonin and impaired cortisol secretion in night shift workers might exert a carcinogenic effect. However, prolactin levels were not altered during rotating shift work [88].

Night shift workers are characterized by significantly greater postprandial glucose, insulin, and triacylglycerol responses [89]. Several studies indicate that shift working is associated with an increased incidence of metabolic syndrome, obesity, and diabetes [9092]. Night workers exhibit a greater proportion of body fat mass, lower insulin sensitivity, increased triglycerides, and blunted postmeal ghrelin suppression and xenin release [93]. Xenin, a peptide secreted predominantly in the upper gut, is known to confer a satiating effect. Shift work is associated with increased levels of being overweight and obesity prevalence [94]. In a sleep laboratory study, circadian misalignment was associated with human metabolism. Scheer et al. employed an 11 d forced desynchrony protocol to induce circadian misalignment, all subjects received four isocaloric diet each 28 hour day, following which leptin levels decreased, glucose and insulin increased, cortisol rhythm was reversed, sleep efficiency was reduced, and mean arterial pressure was increased [24]. The study demonstrated the adverse cardiometabolic effects of circadian misalignment, observed acutely during jetlag and chronically during shift work. Sleep deprivation with circadian disruption is viewed as a modifiable risk factor for metabolic disease. Subjects restricted to <5.6 h of sleep/day were characterized by decreased resting metabolic rate and increased plasma glucose concentrations after a meal [95]. Another laboratory study induced sleep deprivation, with and without circadian misalignment; during circadian misalignment, insulin sensitivity increased twofold compared with the nonmisalignment group, and inflammation also increased [96]. Similarly, circadian misalignment was induced using two different light-entrained circadian cycles (21 and 27 h), which altered sleep architecture, dysregulated the HPA-axis, and reduced insulin sensitivity [97]. A recent meta-analysis of the relationship between shift work and diabetes demonstrated an overall effect size of 1.09 [98].

Long-term nightshift working is also associated with decreased total cortisol [99]. In a study of swing shift workers (1 week of nightshift followed by 1 week of dayshift) no reduction in reaction-times or overall health was observed, but cortisol rhythms did not completely normalize even after 4 weeks of holiday [100]. A Japanese study used a 3-year follow-up design to explore the long-term effects of shift work on metabolic syndrome. The odds ratios for metabolic syndrome, of two- and three-shift working patterns, were 1.88 and 0.87, respectively, such that a two-shift working pattern appeared to be a risk factor for metabolic syndrome [101]. In another 4-year follow-up, the relative risk for metabolic syndrome in night shift workers was increased fivefold compared with dayshift workers [102]. In a study by Guo et al., shift work in retired workers was associated with reduced sleep quality, diabetes, and hypertension. Shift work might be associated with long-lasting negative health effects, even after its cessation [103].

In various animal models, circadian disturbances cause metabolic problems. The “night work” experimental model was applied to rats subjected to 8 h forced activity during rest and active phases, which disrupted clock and metabolic gene rhythms. The daily peak of PER1, BMAL1, and clock rhythms was inverted while PER2 rhythm was lost in the liver; NAMPT and PPARα genes, involved in metabolism, lost their rhythm and synchrony with clock genes, which could result in metabolic syndrome and obesity [104]. Circadian disturbances provoked by dim lights at night (dLAN) increased body mass, reduced glucose tolerance, and disrupted the timing of food intake in mice [105]. When exposed to dLAN at night, the amplitude of PER1 and PER2 rhythms was reduced in the hypothalamus [106]. In another study, the metabolic disruption induced by dLAN was ameliorated upon its removal [107].

The effects of chronic jet lag were evaluated in mice studies. When mice were exposed to chronic jet lag conditions, the expression of various clock genes such as Per2 and BMAL1 in the liver was dampened, the tumor suppressor gene p53 expression was suppressed, and the cell cycle progression gene c-Myc expression was induced [108]. Another study revealed that chronic jet lag in mice leads to the phase shift of clock genes (Per1, BMAL1, and Per2) and activated expression of p53 and c-Myc in the liver [109].

Feeding pattern has been reported to be a potent zeitgeber for peripheral circadian clocks. Food restriction in mice resets the phase of rhythmic gene expression in the liver, kidney, and heart and resulted in circadian dyssynchrony between central and peripheral clocks [110]. Light phase fed mice gained significantly more weight than mice fed only during the 12 h dark phase and showed higher fat percentage in body composition [111]. In another study, light phase fed mice were associated with larger consumption of meal and calories, tissue-specific alterations in the phases and amplitudes of circadian clock and metabolic genes (greatest phase differences observed in the liver and diminution of amplitudes in epididymal fat, gastrocnemius muscle, and heart), and greater weight gain [112]. Human subjects with nocturnal life (consuming majority of their calories just before overnight sleep) showed weakened association between glucose elevation and insulin secretion, which is likely to be a risk factor of obesity and diabetes [113]. When mice were restricted to be fed in the dark phase, they were protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation under the high fat diet condition [114]. Tsai et al. reported that mice fed a high fat diet during the dark phase exhibited normal body weight gain and energy balance, increased fatty acid oxidation at whole body, induced fatty acid responsive genes, and improved myocardial contractile function [115]. These data support the hypothesis that ingestion of dietary fat only during the more active/awake period allows adequate metabolic adaptation.

7. Conclusion

Evidence suggests that various hormones and metabolic processes are affected by sleep quality and circadian rhythms; such interactions are mediated by numerous clock genes. Hormones such as growth hormone, melatonin, cortisol, leptin, and ghrelin are closely associated with sleep and circadian rhythmicity, and endogenous circadian-regulating mechanisms play an important role in glucose and lipid homeostasis. Sleep disturbances and, particularly, deprivation are associated with an increased risk of obesity, diabetes and insulin insensitivity, and dysregulation of leptin and ghrelin, which negatively impact human health. Circadian disruption, which is typically induced by shift work, may negatively affect health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, dysregulation of leptin and ghrelin, more severe metabolic syndrome, and clock gene rhythm loss. Future research should elucidate the relationship between sleep disturbance and various physical outcomes and identify the optimal therapeutic approach for the resolution of sleep and circadian rhythm disruption through the recovery of clock genes.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. I. Edery, “Circadian rhythms in a nutshell,” Physiol Genomics, vol. 3, no. 2, pp. 59–74, 2000. View at Google Scholar · View at Scopus
  2. A. A. Borbely, “A two process model of sleep regulation,” Human Neurobiology, vol. 1, no. 3, pp. 195–204, 1982. View at Google Scholar · View at Scopus
  3. R. Pietrowsky, R. Meyrer, W. Kern, J. Born, and H. L. Fehm, “Effects of diurnal sleep on secretion of cortisol, luteinizing hormone, and growth hormone in man,” Journal of Clinical Endocrinology and Metabolism, vol. 78, no. 3, pp. 683–687, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Weibel, M. Follenius, K. Spiegel, C. Gronfier, and G. Brandenberger, “Growth hormone secretion in night workers,” Chronobiology International, vol. 14, no. 1, pp. 49–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. R. W. Holl, M. L. Hartman, J. D. Veldhuis, W. M. Taylor, and M. O. Thorner, “Thirty-second sampling of plasma growth hormone in man: correlation with sleep stages,” Journal of Clinical Endocrinology and Metabolism, vol. 72, no. 4, pp. 854–861, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. E. van Cauter, M. Kerkhofs, A. Caufriez, A. van Onderbergen, M. O. Thorner, and G. Copinschi, “A quantitative estimation of growth hormone secretion in normal man: reproducibility and relation to sleep and time of day,” Journal of Clinical Endocrinology and Metabolism, vol. 74, no. 6, pp. 1441–1450, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. S. van Liempt, E. Vermetten, E. Lentjes, J. Arends, and H. Westenberg, “Decreased nocturnal growth hormone secretion and sleep fragmentation in combat-related posttraumatic stress disorder; potential predictors of impaired memory consolidation,” Psychoneuroendocrinology, vol. 36, no. 9, pp. 1361–1369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Verrillo, C. Bizzarri, O. Bruni et al., “Effects of replacement therapy on sleep architecture in children with growth hormone deficiency,” Sleep Medicine, vol. 13, no. 5, pp. 496–502, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. W. Cain, C. F. Dennison, J. M. Zeitzer et al., “Sex differences in phase angle of entrainment and melatonin amplitude in humans,” Journal of Biological Rhythms, vol. 25, no. 4, pp. 288–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Gooley, K. Chamberlain, K. A. Smith et al., “Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. E463–E472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Teclemariam-Mesbah, G. J. T. Horst, F. Postema, J. Wortel, and R. M. Buijs, “Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway,” The Journal of Comparative Neurology, vol. 406, no. 2, pp. 171–182, 1999. View at Google Scholar
  12. K. M. Sharkey, L. F. Fogg, and C. I. Eastman, “Effects of melatonin administration on daytime sleep after simulated night shift work,” Journal of Sleep Research, vol. 10, no. 3, pp. 181–192, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Aeschbach, B. J. Lockyer, D.-J. Dijk et al., “Use of transdermal melatonin delivery to improve sleep maintenance during daytime,” Clinical Pharmacology and Therapeutics, vol. 86, no. 4, pp. 378–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. J. van den Heuvel, K. J. Reid, and D. Dawson, “Effect of atenolol on nocturnal sleep and temperature in young men: reversal by pharmacological doses of melatonin,” Physiology and Behavior, vol. 61, no. 6, pp. 795–802, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. F. A. J. L. Scheer, J. M. Zeitzer, N. T. Ayas, R. Brown, C. A. Czeisler, and S. A. Shea, “Reduced sleep efficiency in cervical spinal cord injury; association with abolished night time melatonin secretion,” Spinal Cord, vol. 44, no. 2, pp. 78–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. K. Wyatt, D.-J. Dijk, A. Ritz-De Cecco, J. M. Ronda, and C. A. Czeisler, “Sleep-facilitating effect of exogenous melatonin in healthy young men and women is circadian-phase dependent,” Sleep, vol. 29, no. 5, pp. 609–618, 2006. View at Google Scholar · View at Scopus
  17. H. J. Burgess, V. L. Revell, T. A. Molina, and C. I. Eastman, “Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3325–3331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. L. Sack, R. W. Brandes, A. R. Kendall, and A. J. Lewy, “Entrainment of free-running circadian rhythms by melatonin in blind people,” The New England Journal of Medicine, vol. 343, no. 15, pp. 1070–1077, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. Allan and C. A. Czeisler, “Persistence of the circadian thyrotropin rhythm under constant conditions and after light-induced shifts of circadian phase,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 2, pp. 508–512, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Wehr, D. E. Moul, G. Barbato et al., “Conservation of photoperiod-responsive mechanisms in humans,” The American Journal of Physiology, vol. 265, no. 4, part 2, pp. R846–R857, 1993. View at Google Scholar · View at Scopus
  21. B. Goichot, G. Brandenberger, J. Saini, G. Wittersheim, and M. Follenius, “Nocturnal plasma thyrotropin variations are related to slow-wave sleep,” Journal of Sleep Research, vol. 1, no. 3, pp. 186–190, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Gronfier, R. Luthringer, M. Follenius et al., “Temporal link between plasma thyrotropin levels and electroencephalographic activity in man,” Neuroscience Letters, vol. 200, no. 2, pp. 97–100, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. T. A. Wehr, D. Aeschbach, and W. C. Duncan Jr., “Evidence for a biological dawn and dusk in the human circadian timing system,” The Journal of Physiology, vol. 535, no. 3, pp. 937–951, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. F. A. J. L. Scheer, M. F. Hilton, C. S. Mantzoros, and S. A. Shea, “Adverse metabolic and cardiovascular consequences of circadian misalignment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4453–4458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Windle, S. A. Wood, N. Shanks, S. L. Lightman, and C. D. Ingram, “Ultradian rhythm of basal corticosterone release in the female rat: dynamic interaction with the response to acute stress,” Endocrinology, vol. 139, no. 2, pp. 443–450, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. E. A. Young, J. Abelson, and S. L. Lightman, “Cortisol pulsatility and its role in stress regulation and health,” Frontiers in Neuroendocrinology, vol. 25, no. 2, pp. 69–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. M. Buijs, “Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway,” European Journal of Neuroscience, vol. 11, no. 5, pp. 1535–1544, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Steiger, “Sleep and the hypothalamo-pituitary-adrenocortical system,” Sleep Medicine Reviews, vol. 6, no. 2, pp. 125–138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. W. P. Esler, J. Rudolph, T. H. Claus et al., “Small-molecule Ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss,” Endocrinology, vol. 148, no. 11, pp. 5175–5185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Clément, C. Vaisse, N. Lahlou et al., “A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction,” Nature, vol. 392, no. 6674, pp. 398–401, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Natalucci, S. Riedl, A. Gleiss, T. Zidek, and H. Frisch, “Spontaneous 24-h ghrelin secretion pattern in fasting subjects: maintenance of a meal-related pattern,” European Journal of Endocrinology, vol. 152, no. 6, pp. 845–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. L. Drazen, T. P. Vahl, D. A. D'Alessio, R. J. Seeley, and S. C. Woods, “Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status,” Endocrinology, vol. 147, no. 1, pp. 23–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Weikel, A. Wichniak, M. Ising et al., “Ghrelin promotes slow-wave sleep in humans,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 284, no. 2, pp. E407–E415, 2003. View at Google Scholar · View at Scopus
  34. C. M. Sinton, T. E. Fitch, and H. K. Gershenfeld, “The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation,” Journal of Sleep Research, vol. 8, no. 3, pp. 197–203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Kluge, M. Gazea, P. Schüssler et al., “Ghrelin increases slow wave sleep and stage 2 sleep and decreases stage 1 sleep and REM sleep in elderly men but does not affect sleep in elderly women,” Psychoneuroendocrinology, vol. 35, no. 2, pp. 297–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Dzaja, M. A. Dalal, H. Himmerich, M. Uhr, T. Pollmächer, and A. Schuld, “Sleep enhances nocturnal plasma ghrelin levels in healthy subjects,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 286, no. 6, pp. E963–E967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Schuessler, M. Uhr, M. Ising, D. Schmid, J. Weikel, and A. Steiger, “Nocturnal ghrelin levels—relationship to sleep EEG, the levels of growth hormone, ACTH and cortisol- and gender differences,” Journal of Sleep Research, vol. 14, no. 4, pp. 329–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Shea, M. F. Hilton, C. Orlova, R. Timothy Ayers, and C. S. Mantzoros, “Independent circadian and sleep/wake regulation of adipokines and glucose in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2537–2544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. S. E. la Fleur, A. Kalsbeek, J. Wortel, and R. M. Buijs, “A suprachiasmatic nucleus generated rhythm in basal glucose concentrations,” Journal of Neuroendocrinology, vol. 11, no. 8, pp. 643–652, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Kalsbeek, S. la Fleur, and E. Fliers, “Circadian control of glucose metabolism,” Molecular Metabolism, vol. 3, no. 4, pp. 372–383, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Doi, K. Oishi, and N. Ishida, “CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2,” The Journal of Biological Chemistry, vol. 285, no. 29, pp. 22114–22121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. A. Lamia, K. F. Storch, and C. J. Weitz, “Physiological significance of a peripheral tissue circadian clock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15172–15177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. E. E. Zhang, Y. Liu, R. Dentin et al., “Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis,” Nature Medicine, vol. 16, no. 10, pp. 1152–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Mühlbauer, E. Gross, K. Labucay, S. Wolgast, and E. Peschke, “Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose,” European Journal of Pharmacology, vol. 606, no. 1–3, pp. 61–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Bähr, E. Mühlbauer, H. Schucht, and E. Peschke, “Melatonin stimulates glucagon secretion in vitro and in vivo,” Journal of Pineal Research, vol. 50, no. 3, pp. 336–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Pan and M. M. Hussain, “Clock is important for food and circadian regulation of macronutrient absorption in mice,” The Journal of Lipid Research, vol. 50, no. 9, pp. 1800–1813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Pan and M. M. Hussain, “Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels,” Journal of Biological Chemistry, vol. 282, no. 34, pp. 24707–24717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Pan, Y. Zhang, L. Wang, and M. Mahmood Hussain, “Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP,” Cell Metabolism, vol. 12, no. 2, pp. 174–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Swanson, C. B. Forsyth, Y. Tang et al., “Role of intestinal circadian genes in alcohol-induced gut leakiness,” Alcoholism: Clinical and Experimental Research, vol. 35, no. 7, pp. 1305–1314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Shostak, J. Meyer-Kovac, and H. Oster, “Circadian regulation of lipid mobilization in white adipose tissues,” Diabetes, vol. 62, no. 7, pp. 2195–2203, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. F. W. Turek, C. Joshu, A. Kohsaka et al., “Obesity and metabolic syndrome in circadian Clock mutant mice,” Science, vol. 308, no. 5724, pp. 1043–1045, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. R. D. Rudic, P. McNamara, A.-M. Curtis et al., “BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis,” PLoS Biology, vol. 2, no. 11, article e377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Shimba, N. Ishii, Y. Ohta et al., “Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12071–12076, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Shimba, T. Ogawa, S. Hitosugi et al., “Deficient of a clock gene, brain and muscle arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation,” PLoS ONE, vol. 6, no. 9, Article ID e25231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Douris, S. Kojima, X. Pan et al., “Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes,” Current Biology, vol. 21, no. 16, pp. 1347–1355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. W. Keith, D. T. Redden, P. T. Katzmarzyk et al., “Putative contributors to the secular increase in obesity: exploring the roads less traveled,” International Journal of Obesity, vol. 30, no. 11, pp. 1585–1594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Spiegel, E. Tasali, P. Penev, and E. van Cauter, “Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite,” Annals of Internal Medicine, vol. 141, no. 11, pp. 846–850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. National Sleep Foundation, Sleep in Americal Poll, National Sleep Foundation, 2008.
  59. R. von Kries, A. M. Toschke, H. Wurmser, T. Sauerwald, and B. Koletzko, “Reduced risk for overweight and obesity in 5- and 6-y-old children by duration of sleep—a cross-sectional study,” International Journal of Obesity, vol. 26, no. 5, pp. 710–716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. J. E. Gangwisch, D. Malaspina, B. Boden-Albala, and S. B. Heymsfield, “Inadequate sleep as a risk factor for obesity: analyses of the NHANES I,” Sleep, vol. 28, no. 10, pp. 1289–1296, 2005. View at Google Scholar · View at Scopus
  61. J. J. Reilly, J. Armstrong, A. R. Dorosty et al., “Early life risk factors for obesity in childhood: cohort study,” British Medical Journal, vol. 330, no. 7504, pp. 1357–1359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Sugimori, K. Yoshida, T. Izuno et al., “Analysis of factors that influence body mass index from ages 3 to 6 years: a study based on the Toyama Cohort Study,” Pediatrics International, vol. 46, no. 3, pp. 302–310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. E. K. Snell, E. K. Adam, and G. J. Duncan, “Sleep and the body mass index and overweight status of children and adolescents,” Child Development, vol. 78, no. 1, pp. 309–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. J. C. Lumeng, D. Somashekar, D. Appugliese, N. Kaciroti, R. F. Corwyn, and R. H. Bradley, “Shorter sleep duration is associated with increased risk for being overweight at ages 9 to 12 years,” Pediatrics, vol. 120, no. 5, pp. 1020–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. J.-P. Chaput, C. Bouchard, and A. Tremblay, “Change in sleep duration and visceral fat accumulation over 6 years in adults,” Obesity, vol. 22, no. 5, pp. E12–E12, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Bel, N. Michels, T. De Vriendt et al., “Association between self-reported sleep duration and dietary quality in European adolescents,” British Journal of Nutrition, vol. 110, no. 5, pp. 949–959, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. K. L. Knutson and E. van Cauter, “Associations between sleep loss and increased risk of obesity and diabetes,” Annals of the New York Academy of Sciences, vol. 1129, pp. 287–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Zizi, G. Jean-Louis, C. D. Brown, G. Ogedegbe, C. Boutin-Foster, and S. I. McFarlane, “Sleep duration and the risk of diabetes mellitus: epidemiologic evidence and pathophysiologic insights,” Current Diabetes Reports, vol. 10, no. 1, pp. 43–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Spiegel, R. Leproult, and E. van Cauter, “Impact of sleep debt on metabolic and endocrine function,” The Lancet, vol. 354, no. 9188, pp. 1435–1439, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Spiegel, K. Knutson, R. Leproult, E. Tasali, and E. Van Cauter, “Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes,” Journal of Applied Physiology, vol. 99, no. 5, pp. 2008–2019, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. J. L. Broussard, D. A. Ehrmann, E. van Cauter, E. Tasali, and M. J. Brady, “Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study,” Annals of Internal Medicine, vol. 157, no. 8, pp. 549–557, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Ohkuma, H. Fujii, M. Iwase et al., “U-shaped association of sleep duration with metabolic syndrome and insulin resistance in patients with type 2 diabetes: the Fukuoka Diabetes Registry,” Metabolism: Clinical and Experimental, vol. 63, no. 4, pp. 484–491, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. C. N. Hart, M. A. Carskadon, R. V. Considine et al., “Changes in children's sleep duration on food intake, weight, and leptin,” Pediatrics, vol. 132, no. 6, pp. e1473–e1480, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. M. D. Robertson, D. Russell-Jones, A. M. Umpleby, and D.-J. Dijk, “Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men,” Metabolism: Clinical and Experimental, vol. 62, no. 2, pp. 204–211, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Klingenberg, J.-P. Chaput, U. Holmbäck et al., “Acute sleep restriction reduces insulin sensitivity in adolescent boys,” Sleep, vol. 36, no. 7, pp. 1085–1090, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. A. D. Calvin, R. E. Carter, T. Adachi et al., “Effects of experimental sleep restriction on caloric intake and activity energy expenditure,” Chest, vol. 144, no. 1, pp. 79–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. A. C. Reynolds, J. Dorrian, P. Y. Liu et al., “Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men,” PLoS ONE, vol. 7, no. 7, Article ID e41218, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. M.-P. St-Onge, M. O'Keeffe, A. L. Roberts, A. RoyChoudhury, and B. Laferrère, “Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women,” Sleep, vol. 35, no. 11, pp. 1503–1510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. A. V. Nedeltcheva, J. M. Kilkus, J. Imperial, K. Kasza, D. A. Schoeller, and P. D. Penev, “Sleep curtailment is accompanied by increased intake of calories from snacks,” The American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 126–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. D. W. Beebe, S. Simon, S. Summer, S. Hemmer, D. Strotman, and L. M. Dolan, “Dietary intake following experimentally restricted sleep in adolescents,” Sleep, vol. 36, no. 6, pp. 827–834, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. M. P. St-Onge, S. Wolfe, M. Sy, A. Shechter, and J. Hirsch, “Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals,” International Journal of Obesity, vol. 38, no. 3, pp. 411–416, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. S. M. Greer, A. N. Goldstein, and M. P. Walker, “The impact of sleep deprivation on food desire in the human brain,” Nature Communications, vol. 4, article 2259, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Benedict, M. Hallschmid, A. Lassen et al., “Acute sleep deprivation reduces energy expenditure in healthy men,” The American Journal of Clinical Nutrition, vol. 93, no. 6, pp. 1229–1236, 2011. View at Google Scholar · View at Scopus
  84. S. Pejovic, A. N. Vgontzas, M. Basta et al., “Leptin and hunger levels in young healthy adults after one night of sleep loss,” Journal of Sleep Research, vol. 19, no. 4, pp. 552–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Tasali, R. Leproult, D. A. Ehrmann, and E. van Cauter, “Slow-wave sleep and the risk of type 2 diabetes in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 1044–1049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Herzog, K. Jauch-Chara, F. Hyzy et al., “Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men,” Psychoneuroendocrinology, vol. 38, no. 10, pp. 2075–2082, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. D. K. Mirick, P. Bhatti, C. Chen, F. Nordt, F. Z. Stanczyk, and S. Davis, “Night shift work and levels of 6-sulfatoxymelatonin and cortisol in men,” Cancer Epidemiology Biomarkers and Prevention, vol. 22, no. 6, pp. 1079–1087, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Bukowska, W. Sobala, and B. Peplonska, “Rotating night shift work, sleep quality, selected lifestyle factors and prolactin concentration in nurses and midwives,” Chronobiology International, pp. 1–9, 2014. View at Publisher · View at Google Scholar
  89. J. Lund, J. Arendt, S. M. Hampton, J. English, and L. M. Morgan, “Postprandial hormone and metabolic responses amongst shift workers in Antarctica,” Journal of Endocrinology, vol. 171, no. 3, pp. 557–564, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. Y.-C. Lin, T.-J. Hsiao, and P.-C. Chen, “Persistent rotating shift-work exposure accelerates development of metabolic syndrome among middle-aged female employees: a five-Year follow-up,” Chronobiology International, vol. 26, no. 4, pp. 740–755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Burgueño, C. Gemma, T. F. Gianotti, S. Sookoian, and C. J. Pirola, “Increased levels of resistin in rotating shift workers: a potential mediator of cardiovascular risk associated with circadian misalignment,” Atherosclerosis, vol. 210, no. 2, pp. 625–629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. J.-D. Chen, Y.-C. Lin, and S.-T. Hsiao, “Obesity and high blood pressure of 12-hour night shift female clean-room workers,” Chronobiology International, vol. 27, no. 2, pp. 334–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Schiavo-Cardozo, M. M. O. Lima, J. C. Pareja, and B. Geloneze, “Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers,” Clinical Endocrinology, vol. 79, no. 6, pp. 807–811, 2013. View at Publisher · View at Google Scholar · View at Scopus
  94. M.-J. Kim, K.-H. Son, H.-Y. Park et al., “Association between shift work and obesity among female nurses: Korean Nurses' Survey,” BMC Public Health, vol. 13, no. 1, article 1204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  95. O. M. Buxton, S. W. Cain, S. P. O'Connor et al., “Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption,” Science Translational Medicine, vol. 4, no. 129, Article ID 129ra43, 2012. View at Publisher · View at Google Scholar
  96. R. Leproult, U. Holmbäck, and E. van Cauter, “Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss,” Diabetes, vol. 63, no. 6, pp. 1860–1869, 2014. View at Publisher · View at Google Scholar · View at Scopus
  97. H. K. J. Gonnissen, C. Mazuy, F. Rutters, E. A. P. Martens, T. C. Adam, and M. S. Westerterp-Plantenga, “Sleep architecture when sleeping at an unusual circadian time and associations with insulin sensitivity,” PLoS ONE, vol. 8, no. 8, Article ID e72877, 2013. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Shiri, “Shift work and diabetes: a meta-analysis,” Occupational and Environmental Medicine, vol. 71, no. 11, pp. 804–805, 2014. View at Google Scholar
  99. D. Fekedulegn, C. M. Burchfiel, J. M. Violanti et al., “Associations of long-term shift work with waking salivary cortisol concentration and patterns among police officers,” Industrial Health, vol. 50, no. 6, pp. 476–486, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Harris, S. Waage, H. Ursin, Å. M. Hansen, B. Bjorvatn, and H. R. Eriksen, “Cortisol, reaction time test and health among offshore shift workers,” Psychoneuroendocrinology, vol. 35, no. 9, pp. 1339–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Kawada and T. Otsuka, “Effect of shift work on the development of metabolic syndrome after 3 years in japanese male workers,” Archives of Environmental and Occupational Health, vol. 69, no. 1, pp. 55–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Pietroiusti, A. Neri, G. Somma et al., “Incidence of metabolic syndrome among night-shift healthcare workers,” Occupational and Environmental Medicine, vol. 67, no. 1, pp. 54–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Guo, Y. Liu, X. Huang et al., “The effects of shift work on sleeping quality, hypertension and diabetes in retired workers,” PLoS ONE, vol. 8, no. 8, Article ID e71107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. R. C. Salgado-Delgado, N. Saderi, M. D. C. Basualdo, N. N. Guerrero-Vargas, C. Escobar, and R. M. Buijs, “Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats,” PLoS ONE, vol. 8, no. 4, Article ID e60052, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. L. K. Fonken, J. L. Workman, J. C. Walton et al., “Light at night increases body mass by shifting the time of food intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18664–18669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. L. K. Fonken, T. G. Aubrecht, O. H. Meléndez-Fernández, Z. M. Weil, and R. J. Nelson, “Dim light at night disrupts molecular circadian rhythms and increases body weight,” Journal of Biological Rhythms, vol. 28, no. 4, pp. 262–271, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. L. K. Fonken, Z. M. Weil, and R. J. Nelson, “Dark nights reverse metabolic disruption caused by dim light at night,” Obesity, vol. 21, no. 6, pp. 1159–1164, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. E. Filipski, P. F. Innominato, M. Wu et al., “Effects of light and food schedules on liver and tumor molecular clocks in mice,” Journal of the National Cancer Institute, vol. 97, no. 7, pp. 507–517, 2005. View at Google Scholar
  109. A. Iwamoto, M. Kawai, M. Furuse, and S. Yasuo, “Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice,” Chronobiology International, vol. 31, no. 2, pp. 189–198, 2014. View at Publisher · View at Google Scholar · View at Scopus
  110. F. Damiola, N. Le Minli, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler, “Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus,” Genes and Development, vol. 14, no. 23, pp. 2950–2961, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. D. M. Arble, J. Bass, A. D. Laposky, M. H. Vitaterna, and F. W. Turek, “Circadian timing of food intake contributes to weight gain,” Obesity, vol. 17, no. 11, pp. 2100–2102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. M. S. Bray, W. F. Ratcliffe, M. H. Grenett, R. A. Brewer, K. L. Gamble, and M. E. Young, “Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice,” International Journal of Obesity, vol. 37, no. 6, pp. 843–852, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. L.-Q. Qin, J. Li, Y. Wang, J. Wang, J.-Y. Xu, and T. Kaneko, “The effects of nocturnal life on endocrine circadian patterns in healthy adults,” Life Sciences, vol. 73, no. 19, pp. 2467–2475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Hatori, C. Vollmers, A. Zarrinpar et al., “Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet,” Cell Metabolism, vol. 15, no. 6, pp. 848–860, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. J.-Y. Tsai, C. Villegas-Montoya, B. B. Boland et al., “Influence of dark phase restricted high fat feeding on myocardial adaptation in mice,” Journal of Molecular and Cellular Cardiology, vol. 55, no. 1, pp. 147–155, 2013. View at Publisher · View at Google Scholar · View at Scopus