Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2016 (2016), Article ID 1849162, 12 pages
http://dx.doi.org/10.1155/2016/1849162
Review Article

Effects of Inositol(s) in Women with PCOS: A Systematic Review of Randomized Controlled Trials

1Department of Medical Sciences, IPUS-Institute of Higher Education, Chiasso, Switzerland
2Department of Medicine and Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
3Clinic of Endocrinology, Alexandrovska University Hospital, Medical University, Sofia, Bulgaria
4IAKENTRO, Infertility Treatment Center, Thessaloniki, Greece
5Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy

Received 6 July 2016; Accepted 22 September 2016

Academic Editor: Michael Horowitz

Copyright © 2016 Vittorio Unfer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The Rotterdam ESHRE/ASRM Sponsored PCOS Consensus Workshop Group, “Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS),” Human Reproduction, vol. 19, no. 1, pp. 41–47, 2004. View at Google Scholar
  2. M. Ciampelli, A. M. Fulghesu, F. Cucinelli et al., “Impact of insulin and body mass index on metabolic and endocrine variables in polycystic ovary syndrome,” Metabolism: Clinical and Experimental, vol. 48, no. 2, pp. 167–172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. A. D. Genazzani, C. Battaglia, B. Malavasi, C. Strucchi, F. Tortolani, and O. Gamba, “Metformin administration modulates and restores luteinizing hormone spontaneous episodic secretion and ovarian function in nonobese patients with polycystic ovary syndrome,” Fertility and Sterility, vol. 81, no. 1, pp. 114–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Bigos, E. Palkowska, and D. Rosolowska-Huszca, “Effect of artificial and natural sweeteners on glucose and insulin in plasma of rats,” Journal of Pre-Clinical and Clinical Research, vol. 6, no. 2, pp. 93–97, 2012. View at Google Scholar
  5. A. Dunaif, K. R. Segal, W. Futterweit, and A. Dobrjansky, “Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome,” Diabetes, vol. 38, no. 9, pp. 1165–1174, 1989. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. E. Laven, A. G. M. G. J. Mulders, E. J. P. van Santbrink, M. J. C. Eijkemans, and B. C. J. M. Fauser, “PCOS: backgrounds, evidence and problems in diagnosing the syndrome,” International Congress Series, vol. 1279, pp. 10–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Nestler, “Role of hyperinsulinemia in the pathogenesis of the polycystic ovary syndrome, and its clinical implications,” Seminars in Reproductive Endocrinology, vol. 15, no. 2, pp. 111–122, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Lord, I. H. K. Flight, and R. J. Norman, “Metformin in polycystic ovary syndrome: systematic review and meta-analysis,” British Medical Journal, vol. 327, no. 7421, pp. 951–953, 2003. View at Google Scholar
  9. R. Pasquali and A. Gambineri, “Insulin-sensitizing agents in polycystic ovary syndrome,” European Journal of Endocrinology, vol. 154, no. 6, pp. 763–775, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Gerli, M. Mignosa, and G. C. Di Renzo, “Effects of inositol on ovarian function and metabolic factors in women with PCOS: a randomized double blind placebo-controlled trial,” European Review for Medical and Pharmacological Sciences, vol. 7, no. 6, pp. 151–159, 2003. View at Google Scholar · View at Scopus
  11. S. Gerli, E. Papaleo, A. Ferrari, and G. C. di Renzo, “Randomized, double blind placebo-controlled trial: effects of myo-inositol on ovarian function and metabolic factors in women with PCOS,” European Review for Medical and Pharmacological Sciences, vol. 11, no. 5, pp. 347–354, 2007. View at Google Scholar · View at Scopus
  12. M. J. Iuorno, D. J. Jakubowicz, J.-P. Baillargeon et al., “Effects of D-chiro-inositol in lean women with the polycystic ovary syndrome,” Endocrine Practice, vol. 8, no. 6, pp. 417–423, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Nestler, D. J. Jakubowicz, P. Reamer, R. D. Gunn, and G. Allan, “Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome,” The New England Journal of Medicine, vol. 340, no. 17, pp. 1314–1320, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Unfer, G. Carlomagno, G. Dante, and F. Facchinetti, “Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials,” Gynecological Endocrinology, vol. 28, no. 7, pp. 509–515, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. E. Nestler and V. Unfer, “Reflections on inositol(s) for PCOS therapy: steps toward success,” Gynecological Endocrinology, vol. 31, no. 7, pp. 501–505, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Nestler, D. J. Jakubowicz, A. F. de Vargas, C. Brik, N. Quintero, and F. Medina, “Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system,” The Journal of Clinical Endocrinology & Metabolism, vol. 83, no. 6, pp. 2001–2005, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Unfer, G. Carlomagno, E. Papaleo, S. Vailati, M. Candiani, and J.-P. Baillargeon, “Hyperinsulinemia alters myoinositol to d-chiroinositol ratio in the follicular fluid of patients with PCOS,” Reproductive Sciences, vol. 21, no. 7, pp. 854–858, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Carlomagno, V. Unfer, and S. Roseff, “The D-chiro-inositol paradox in the ovary,” Fertility and Sterility, vol. 95, no. 8, pp. 2515–2516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Heimark, J. McAllister, and J. Larner, “Decreased myo-inositol to chiro-inositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls,” Endocrine Journal, vol. 61, no. 2, pp. 111–117, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. A. D. Genazzani, C. Lanzoni, F. Ricchieri, and V. M. Jasonni, “Myo-inositol administration positively affects hyperinsulinemia and hormonal parameters in overweight patients with polycystic ovary syndrome,” Gynecological Endocrinology, vol. 24, no. 3, pp. 139–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Costantino, G. Minozzi, F. Minozzi, and C. Guaraldi, “Metabolic and hormonal effects of myo-inositol in women with polycystic ovary syndrome: a double-blind trial,” European Review for Medical and Pharmacological Sciences, vol. 13, no. 2, pp. 105–110, 2009. View at Google Scholar · View at Scopus
  22. M. Nordio and E. Proietti, “The Combined therapy with myo-inositol and D-Chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone,” European Review for Medical and Pharmacological Sciences, vol. 16, no. 5, pp. 575–581, 2012. View at Google Scholar · View at Scopus
  23. E. Benelli, S. Del Ghianda, C. Di Cosmo, and M. Tonacchera, “A combined therapy with myo-inositol and D-chiro-inositol improves endocrine parameters and insulin resistance in PCOS young overweight women,” International Journal of Endocrinology, vol. 2016, Article ID 3204083, 5 pages, 2016. View at Publisher · View at Google Scholar
  24. J. Adams, J. W. Polson, and S. Franks, “Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism,” British Medical Journal, vol. 293, pp. 355–359, 1986. View at Google Scholar
  25. E. Papaleo, V. Unfer, J.-P. Baillargeon, F. Fusi, F. Occhi, and L. De Santis, “Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial,” Fertility and Sterility, vol. 91, no. 5, pp. 1750–1754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Ciotta, M. Stracquadanio, I. Pagano, A. Carbonaro, M. Palumbo, and F. Gulino, “Effects of Myo-Inositol supplementation on oocyte's quality in PCOS patients: a double blind trial,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 5, pp. 509–514, 2011. View at Google Scholar · View at Scopus
  27. E. Raffone, P. Rizzo, and V. Benedetto, “Insulin sensitiser agents alone and in co-treatment with r-FSH for ovulation induction in PCOS women,” Gynecological Endocrinology, vol. 26, no. 4, pp. 275–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Isabella and E. Raffone, “Does ovary need D-chiro-inositol?” Journal of Ovarian Research, vol. 5, no. 1, article 14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Unfer, G. Carlomagno, P. Rizzo, E. Raffone, and S. Roseff, “Myo-inositol rather than D-chiro-inositol is able to improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 4, pp. 452–457, 2011. View at Google Scholar · View at Scopus
  30. S. Colazingari, M. Treglia, R. Najjar, and A. Bevilacqua, “The combined therapy myo-inositol plus D-chiro-inositol, rather than D-chiro-inositol, is able to improve IVF outcomes: results from a randomized controlled trial,” Archives of Gynecology and Obstetrics, vol. 288, no. 6, pp. 1405–1411, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. T. T. Y. Chiu, M. S. Rogers, E. L. K. Law, C. M. Briton-Jones, L. P. Cheung, and C. J. Haines, “Follicular fluid and serum concentrations of myo-inositol in patients undergoing IVF: relationship with oocyte quality,” Human Reproduction, vol. 17, no. 6, pp. 1591–1596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Papaleo, V. Unfer, J.-P. Baillargeon et al., “Myo-inositol in patients with polycystic ovary syndrome: a novel method for ovulation induction,” Gynecological Endocrinology, vol. 23, no. 12, pp. 700–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Asplin, G. Galasko, and J. Larner, “Chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 5924–5928, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. A. S. Kennington, C. R. Hill, J. Craig et al., “Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 323, no. 6, pp. 373–378, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Bevilacqua, G. Carlomagno, S. Gerli et al., “Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology-assisted reproduction technology,” Gynecological Endocrinology, vol. 31, no. 6, pp. 441–446, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Larner, L. C. Huang, C. F. W. Schwartz et al., “Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galactosamine and D-chiroinositol,” Biochemical and Biophysical Research Communications, vol. 151, no. 3, pp. 1416–1426, 1988. View at Publisher · View at Google Scholar · View at Scopus
  37. L. C. Huang, M. C. Fonteles, D. B. Houston, C. Zhang, and J. Larner, “Chiroinositol deficiency and insulin resistance. III. Acute glycogenic and hypoglycemic effects of two inositol phosphoglycan insulin mediators in normal and streptozotocin-diabetic rats in vivo,” Endocrinology, vol. 132, no. 2, pp. 652–657, 1993. View at Google Scholar · View at Scopus
  38. T. T. Y. Chiu, M. S. Rogers, C. Briton-Jones, and C. Haines, “Effects of myo-inositol on the in-vitro maturation and subsequent development of mouse oocytes,” Human Reproduction, vol. 18, no. 2, pp. 408–416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Matsuda, K. Tsutsumi, T. Kanematsu et al., “Involvement of phospholipase C-related inactive protein in the mouse reproductive system through the regulation of gonadotropin levels,” Biology of Reproduction, vol. 81, no. 4, pp. 681–689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J.-P. Baillargeon, J. E. Nestler, R. E. Ostlund, T. Apridonidze, and E. Diamanti-Kandarakis, “Greek hyperinsulinemic women, with or without polycystic ovary syndrome, display altered inositols metabolism,” Human Reproduction, vol. 23, no. 6, pp. 1439–1446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J.-P. Baillargeon, M. J. Iuorno, T. Apridonidze, and J. E. Nestler, “Uncoupling between insulin and release of a d-chiro-inositol-containing inositolphosphoglycan mediator of insulin action in obese women with polycystic ovary syndrome,” Metabolic Syndrome and Related Disorders, vol. 8, no. 2, pp. 127–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J.-P. Baillargeon, E. Diamanti-Kandarakis, R. E. Ostlund Jr., T. Apridonidze, M. J. Iuorno, and J. E. Nestler, “Altered D-chiro-inositol urinary clearance in women with polycystic ovary syndrome,” Diabetes Care, vol. 29, no. 2, pp. 300–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. T. Goud, A. P. Goud, P. Van Oostveldt, and M. Dhont, “Presence and dynamic redistribution of type I inositol 1,4,5- trisphosphate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions,” Molecular Human Reproduction, vol. 5, no. 5, pp. 441–451, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. H. K. Ortmeyer, L. C. Huang, L. Zhang, B. C. Hansen, and J. Larner, “Chiroinositol deficiency and insulin resistance. II. Acute effects of D-chiroinositol administration in streptozotocin-diabetic rats, normal rats given a glucose load, and spontaneously insulin-resistant rhesus monkeys,” Endocrinology, vol. 132, no. 2, pp. 646–651, 1993. View at Google Scholar · View at Scopus
  45. M. Bizzarri and G. Carlomagno, “Inositol: history of an effective therapy for polycystic ovary syndrome,” European Review for Medical and Pharmacological Sciences, vol. 18, no. 13, pp. 1896–1903, 2014. View at Google Scholar · View at Scopus
  46. G. Carlomagno, S. De Grazia, V. Unfer, and F. Manna, “Myo-inositol in a new pharmaceutical form: a step forward to a broader clinical use,” Expert Opinion on Drug Delivery, vol. 9, no. 3, pp. 267–271, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Bevilacqua and M. Bizzarri, “Physiological role and clinical utility of inositols in polycystic ovary syndrome,” Best Practice & Research Clinical Obstetrics & Gynaecology, 2016. View at Publisher · View at Google Scholar