Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2018 (2018), Article ID 8641942, 9 pages
https://doi.org/10.1155/2018/8641942
Review Article

Susceptible and Prognostic Genetic Factors Associated with Diabetic Peripheral Neuropathy: A Comprehensive Literature Review

Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka

Correspondence should be addressed to L. B. L. Prabodha; moc.liamg@ahdobarpurihal

Received 23 October 2017; Accepted 29 January 2018; Published 15 March 2018

Academic Editor: Ilias Migdalis

Copyright © 2018 L. B. L. Prabodha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. International Diabetes Federation, IDF Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 6th edition, 2013.
  2. M. G. M. Wolfs, M. H. Hofker, C. Wijmenga, and T. W. van Haeften, “Type 2 diabetes mellitus: new genetic insights will lead to new therapeutics,” Current Genomics, vol. 10, no. 2, pp. 110–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Singh, “The genetics of type 2 diabetes mellitus: a review,” Journal of Scientific Research, vol. 55, pp. 35–48, 2011, Banaras Hindu University, Varanasi. View at Google Scholar
  4. J. L. Edwards, A. M. Vincent, H. T. Cheng, and E. L. Feldman, “Diabetic neuropathy: mechanisms to management,” Pharmacology & Therapeutics, vol. 120, no. 1, pp. 1–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Centers for Disease Control and Prevention, National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014, US Department of Health and Human Services, Atlanta, GA, USA, 2014.
  6. C. Guja, P. Gagniuc, and C. Ionescu-tîrgovişte, “Genetic factors involved in the pathogenesis of type 2 diabetes,” The Proceedings of the Romanian Academy, Series B, vol. 1, pp. 44–61, 2012. View at Google Scholar
  7. U. J. Kommoju and B. M. Reddy, “Genetic etiology of type 2 diabetes mellitus: a review,” International Journal of Diabetes in Developing Countries, vol. 31, no. 2, pp. 51–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Kota, L. K. Meher, S. Jammula, S. K. Kota, and K. D. Modi, “Genetics of type 2 diabetes mellitus and other specific types of diabetes; its role in treatment modalities,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 6, no. 1, pp. 54–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kato, “Insights into the genetic basis of type 2 diabetes,” Journal of Diabetes Investigation, vol. 4, no. 3, pp. 233–244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Vincent, J. W. Russell, P. Low, and E. L. Feldman, “Oxidative stress in the pathogenesis of diabetic neuropathy,” Endocrine Reviews, vol. 25, no. 4, pp. 612–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yagihashi, H. Mizukami, and K. Sugimoto, “Mechanism of diabetic neuropathy: where are we now and where to go?” Journal of Diabetes Investigation, vol. 2, no. 1, pp. 18–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Imamura and S. Maeda, “Genetics of type 2 diabetes: the GWAS era and future perspectives [review],” Endocrine Journal, vol. 58, no. 9, pp. 723–739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Zeggini, L. J. Scott, R. Saxena et al., “Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes,” Nature Genetics, vol. 40, no. 5, pp. 638–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. H. Ropper, K. C. Gorson, C. L. Gooch et al., “Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial,” Annals of Neurology, vol. 65, no. 4, pp. 386–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Bansal, K. Gudala, H. Muthyala, H. P. Esam, R. Nayakallu, and A. Bhansali, “Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting,” Journal of Diabetes Investigation, vol. 5, no. 6, pp. 714–721, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Tesfaye, A. J. M. Boulton, P. J. Dyck et al., “Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments,” Diabetes Care, vol. 33, no. 10, pp. 2285–2293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. C. Callaghan, H. T. Cheng, C. L. Stables, A. L. Smith, and E. L. Feldman, “Diabetic neuropathy: one disease or two?” Current Opinion in Neurology, vol. 25, no. 5, pp. 536–541, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Papanas, A. I. Vinik, and D. Ziegler, “Neuropathy in prediabetes: does the clock start ticking early?” Nature Reviews Endocrinology, vol. 7, no. 11, pp. 682–690, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Figueroa-Romero, M. Sadidi, and E. L. Feldman, “Mechanisms of disease: the oxidative stress theory of diabetic neuropathy,” Reviews in Endocrine and Metabolic Disorders, vol. 9, no. 4, pp. 301–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Yu, S. Rouen, and R. T. Dobrowsky, “Hyperglycemia and downregulation of caveolin-1 enhance neuregulin-induced demyelination,” Glia, vol. 56, no. 8, pp. 877–887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. McGuire, S. Rouen, E. Siegfreid, D. E. Wright, and R. T. Dobrowsky, “Caveolin-1 and altered neuregulin signaling contribute to the pathophysiological progression of diabetic peripheral neuropathy,” Diabetes, vol. 58, no. 11, pp. 2677–2686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. I. K. Lukic, P. M. Humpert, P. P. Nawroth, and A. Bierhaus, “The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy,” Annals of the New York Academy Sciences, vol. 1126, no. 1, pp. 76–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Lu, Y. Luo, J. Wang et al., “Association of type 2 diabetes susceptibility loci with peripheral nerve function in a Chinese population with diabetes,” Journal of Diabetes Investigation, vol. 8, no. 1, pp. 115–120, 2017. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Yigit, N. Karakus, and A. Inanir, “Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy,” Molecular Vision, vol. 19, pp. 1626–1630, 2013. View at Google Scholar
  25. C. Monastiriotis, N. Papanas, and G. Trypsianis, “The ε4 allele of the APOE gene is associated with more severe peripheral neuropathy in type 2 diabetic patients,” Angiology, vol. 64, no. 6, pp. 451–455, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Papanas, K. Papatheodorou, D. Papazoglou, S. Kotsiou, D. Christakidis, and E. Maltezos, “An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with peripheral neuropathy in patients with type 2 diabetes mellitus,” Experimental and Clinical Endocrinology & Diabetes, vol. 115, no. 05, pp. 327–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Hur, K. Sullivan, M. Pande et al., “The identification of gene expression profiles associated with progression of human diabetic neuropathy,” Brain, vol. 134, no. 11, pp. 3222–3235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Rivero, C. Mora, M. Muros, J. Garcia, H. Herrera, and J. F. Navarro-Gonzalez, “Pathogenic perspectives for the role of inflammation in diabetic nephropathy,” Clinical Science, vol. 116, no. 6, pp. 479–492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kakoki, K. A. Sullivan, C. Backus et al., “Lack of both bradykinin B1 and B2 receptors enhances nephropathy, neuropathy, and bone mineral loss in Akita diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 22, pp. 10190–10195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Pawelczyk, M. Grden, R. Rzepko, M. Sakowicz, and A. Szutowicz, “Region-specific alterations of adenosine receptors expression level in kidney of diabetic rat,” The American Journal of Pathology, vol. 167, no. 2, pp. 315–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Z. Duan, M. G. Usher, and R. M. Mortensen, “PPARs: the vasculature, inflammation and hypertension,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 2, pp. 128–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Yamagishi, S. Ogasawara, H. Mizukami et al., “Correction of protein kinase C activity and macrophage migration in peripheral nerve by pioglitazone, peroxisome proliferator activated-γ-ligand, in insulin-deficient diabetic rats,” Journal of Neurochemistry, vol. 104, no. 2, pp. 491–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Li, K. Tang, Z. Zhang et al., “Genetic diversity of the apolipoprotein E gene and diabetic nephropathy: a meta-analysis,” Molecular Biology Reports, vol. 38, no. 5, pp. 3243–3252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Cheng, M. Kobayashi, J. A. Martinez et al., “Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy,” Journal of Neuropathology & Experimental Neurology, vol. 74, no. 8, pp. 804–817, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Donnelly, A. S. Doney, A. T. Hattersley, A. D. Morris, and E. R. Pearson, “The effect of obesity on glycaemic response to metformin or sulphonylureas in type 2 diabetes,” Diabetic Medicine, vol. 23, no. 2, pp. 128–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. M. Kim, B. S. Cha, D. J. Kim et al., “Predictive clinical parameters for therapeutic efficacy of rosiglitazone in Korean type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 67, no. 1, pp. 43–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Osterbrand, M. Fahlen, A. Oden, and B. A. Eliasson, “A method to predict the metabolic effects of changes in insulin treatment in subgroups of a large population based patient cohort,” European Journal of Epidemiology, vol. 22, no. 3, pp. 151–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. P. D. O’Brien, J. Hur, N. J. Robell, J. M. Hayes, S. A. Sakowski, and E. L. Feldman, “Gender-specific differences in diabetic neuropathy in BTBR ob/ob mice,” Journal of Diabetes and its Complications, vol. 30, no. 1, pp. 30–37, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Meng, H. A. Deshmukh, L. A. Donnelly et al., “A genome-wide association study provides evidence of sex-specific involvement of Chr1p35.1 (ZSCAN20-TLR12P) and Chr8p23.1 (HMGB1P46) with diabetic neuropathic pain,” EBioMedicine, vol. 4, no. 2, pp. 1386–1393, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Festa, R. D’Agostino Jr., R. P. Tracy, and S. M. Haffner, “Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study,” Diabetes, vol. 51, no. 4, pp. 1131–1137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. B. Nicholas, E. Aguiniga, Y. Ren, J. Kim, J. Wong, and N. Govindarajan, “Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy,” Kidney International, vol. 67, no. 4, pp. 1297–1307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Yang and J. M. Trevillyan, “c-Jun N-terminal kinase pathways in diabetes,” The International Journal of Biochemistry & Cell Biology, vol. 40, no. 12, pp. 2702–2706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Chilton, A. Middlemas, N. Gardiner, and D. R. Tomlinson, “The p75 neurotrophin receptor appears in plasma in diabetic rats—characterisation of a potential early test for neuropathy,” Diabetologia, vol. 47, no. 11, pp. 1924–1930, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. C. Schulze, J. Yoshioka, T. Takahashi, Z. He, G. L. King, and R. T. Lee, “Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein,” Journal of Biological Chemistry, vol. 279, no. 29, pp. 30369–30374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Jurado, J. Ybarra, J. H. Romeo, M. Garcia, and E. Zabaleta-del-Olmo, “Angiotensin-converting enzyme gene single polymorphism as a genetic biomarker of diabetic peripheral neuropathy: longitudinal prospective study,” Journal of Diabetes and its Complications, vol. 26, no. 2, pp. 77–82, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Chandrasekaran, M. Anjaneyulu, T. Inoue et al., “Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy,” American Journal of Physiology Endocrinology and Metabolism, vol. 309, no. 2, pp. E132–E141, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Saraswathy, S. Anand, S. K. Kunnumpurath, R. J. Kurian, A. D. Kaye, and N. Vadivelu, “Chromosomal aberrations and exon 1 mutation in the AKR1B1 gene in patients with diabetic neuropathy,” The Ochsner Journal, vol. 14, no. 3, pp. 339–342, 2014. View at Google Scholar
  48. J. Lorenzen, R. Kumarswamy, S. Dangwal, and T. Thum, “MicroRNAs in diabetes and diabetes-associated complications,” RNA Biology, vol. 9, no. 6, pp. 820–827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Ciccacci, R. Morganti, D. Di Fusco et al., “Common variants in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes,” Acta Diabetologica, vol. 51, no. 4, pp. 663–671, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. S. S. Prabhakar, “Role of nitric oxide in diabetic nephropathy,” Seminars in Nephrology, vol. 24, no. 4, pp. 333–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Nakagawa, W. Sato, O. Glushakova et al., “Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 18, no. 2, pp. 539–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. M. Ghisleni, V. Biolchi, B. C. Jordon, C. Rempel, J. P. Genro, and A. Pozzobon, “Association study of C936T polymorphism of the VEGF gene and the C242T polymorphism of the p22phox gene with diabetes mellitus type 2 and distal diabetic polyneuropathy,” Molecular Medicine Reports, vol. 12, no. 3, pp. 4626–4633, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Wirostko, T. Y. Wong, and R. Simó, “Vascular endothelial growth factor and diabetic complications,” Progress in Retinal and Eye Research, vol. 27, no. 6, pp. 608–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Jia, Y. Tong, and L. Min, “Significance of functional GRP78 polymorphisms in predicting the onset of type 2 diabetic peripheral neuropathy in Chinese population,” Neurological Research, vol. 37, no. 8, pp. 683–687, 2015. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Abdelgadir, A. F. Karlsson, L. Berglund, and C. Berne, “Low serum adiponectin concentrations are associated with insulin sensitivity independent of obesity in Sudanese subjects with type 2 diabetes mellitus,” Diabetology & Metabolic Syndrome, vol. 5, no. 1, p. 15, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Y. Han, Q. H. Wu, M. L. Jiao et al., “Associations between single-nucleotide polymorphisms (+45T>G, +276G>T, −11377C>G, −11391G>A) of adiponectin gene and type 2 diabetes mellitus: a systematic review and meta-analysis,” Diabetologia, vol. 54, no. 9, pp. 2303–2314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Sandy An, N. D. Palmer, A. J. Hanley et al., “Genetic analysis of adiponectin variation and its association with type 2 diabetes in African Americans,” Obesity, vol. 21, no. 12, pp. E721–E729, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Y. Ji, H. F. Li, Y. Lei et al., “Association of adiponectin gene polymorphisms with an elevated risk of diabetic peripheral neuropathy in type 2 diabetes patients,” Journal of Diabetes and its Complications, vol. 29, no. 7, pp. 887–892, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Prasad, S. C. Bronson, T. Warrier et al., “Evaluation of DNA damage in type 2 diabetes mellitus patients with and without peripheral neuropathy: a study in south Indian population,” Journal of Natural Science, Biology and Medicine, vol. 6, no. 1, pp. 80–84, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Stoian, C. Bănescu, R. I. Bălaşa et al., “Influence of GSTM1, GSTT1, and GSTP1 polymorphisms on type 2 diabetes mellitus and diabetic sensorimotor peripheral neuropathy risk,” Disease Markers, vol. 2015, Article ID 638693, 10 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus