Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2011, Article ID 171389, 11 pages
http://dx.doi.org/10.4061/2011/171389
Research Article

Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

1Departamento de Química Analítica, IQ, Universidade Estadual Paulista, 14801-970 Araraquara, SP, Brazil
2Departamento de Química e Física Molecular, IQSC, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
3Instituto de Química, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil

Received 22 February 2011; Accepted 19 March 2011

Academic Editor: Bengi Uslu

Copyright © 2011 Mariana Calora Quintino de Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bertazzoli, C. A. Rodrigues, E. J. Dallan et al., “Mass transport properties of a flow-through electrolytic reactor using a porous electrode: performance and figures of merit for Pb(II) removal,” Brazilian Journal of Chemical Engineering, vol. 15, no. 4, pp. 396–405, 1998. View at Google Scholar · View at Scopus
  2. R. L. Pelegrino, R. A. Di Iglia, C. G. Sanches, L. A. Avaca, and R. Bertazzoli, “Comparative study of commercial oxide electrodes performance in electrochemical degradation of organics in aqueous solutions,” Journal of the Brazilian Chemical Society, vol. 13, no. 1, pp. 60–65, 2002. View at Google Scholar · View at Scopus
  3. R. T. Pelegrini, R. S. Freire, N. Duran, and R. Bertazzoli, “Photoassisted electrochemical degradation of organic pollutants on a DSA type oxide electrode: process test for a phenol synthetic solution and its application for the E1 bleach Kraft mill effluent,” Environmental Science and Technology, vol. 35, no. 13, pp. 2849–2853, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Savall, “Electrochemical treatment of industrial organic effluents,” Chimia, vol. 49, pp. 23–27, 1995. View at Google Scholar
  5. C. A. C. Sequeira and C. Comninellis, “Electrochemical oxidation of organic pollutants for wastewater treatment,” in Environmental Oriented Electrochemistry, pp. 77–101, Elsevier, Amsterdam, The Netherlands, 1994. View at Google Scholar
  6. L. Lipp and D. Pletcher, “The preparation and characterization of tin dioxide coated titanium electrodes,” Electrochimica Acta, vol. 42, no. 7, pp. 1091–1099, 1997. View at Google Scholar · View at Scopus
  7. B. Correa-Lozano, C. Comninellis, and A. De Battisti, “Service life of Ti/SnO2-Sb2O5 anodes,” Journal of Applied Electrochemistry, vol. 27, no. 8, pp. 970–974, 1997. View at Google Scholar · View at Scopus
  8. M. D. P. T. Sotomayor and L. T. Kubota, “Enzymeless biosensors: a novel area for the development of amperometric sensors,” Quimica Nova, vol. 25, no. 1, pp. 123–128, 2002. View at Google Scholar · View at Scopus
  9. M. D. P. T. Sotomayor, A. A. Tanaka, R. S. Freire, and L. T. Kubota, “Amperometric sensors based on biomimetic catalysts,” in Encyclopedia of Sensors, vol. 1, pp. 195–210, American Scientific, Stevenson Ranch, Calif, USA, 2006. View at Google Scholar
  10. M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka, and L. T. Kubota, “Construction and application of an electrochemical sensor for paracetamol determination based on iron tetrapyridinoporphyrazine as a biomimetic catalyst of P450 enzyme,” Journal of the Brazilian Chemical Society, vol. 19, no. 4, pp. 734–743, 2008. View at Google Scholar · View at Scopus
  11. M. C. Q. Oliveira, M. R. V. Lanza, A. A. Tanaka, and M. D. P. T. Sotomayor, “Flow injection analysis of paracetamol using a biomimetic sensor as a sensitive and selective amperometric detector,” Analytical Methods, vol. 2, no. 5, pp. 507–512, 2010. View at Publisher · View at Google Scholar
  12. A. A. Tanaka, C. Fierro, D. A. Scherson, and E. Yeager, “Oxygen reduction on adsorbed iron tetrapyridinoporphyrazine,” Materials Chemistry and Physics, vol. 22, no. 3-4, pp. 431–456, 1989. View at Google Scholar · View at Scopus
  13. P. Calvo-Marzal, S. S. Rosatto, P. A. Granjeiro, H. Aoyama, and L. T. Kubota, “Electroanalytical determination of acid phosphatase activity by monitoring p-nitrophenol,” Analytica Chimica Acta, vol. 441, no. 2, pp. 207–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Bergamin, J. X. Medeiros, B. F. Reis, and E. A. G. Zagatto, “Solvent extraction in continuous flow injection analysis. Determination of molybdenum in plant material,” Analytica Chimica Acta, vol. 101, no. 1, pp. 9–16, 1978. View at Google Scholar · View at Scopus
  15. R. S. Rocha, A. A. G. F. Beati, J. G. Oliveira, and M. R. V. Lanza, “Evaluation of the degradation of sodium diclofenac using H 2O2/fenton in electrochemical reactor,” Quimica Nova, vol. 32, no. 2, pp. 354–358, 2009. View at Google Scholar · View at Scopus
  16. A. A. G. F. Beati, R. S. Rocha, J. G. Oliveira, and M. R. V. Lanza, “Study of the ranitidine degradation by H2O2 electrogenerated/fenton in a electrochemical reactor with gas diffusion electrode,” Quimica Nova, vol. 32, no. 1, pp. 125–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. O. De Nora, A. Nidola, G. Trisoglio, and G. Bianchi, Br. Patent no. 1 399 576, 1973.
  18. L. G. P. Rezende, V. M. Do Prado, R. S. Rocha, A. A. G. F. Beati, M. D. P. T. Sotomayor, and M. R. V. Lanza, “Degradação Eletroquímica do cloranfenicol em reator de fluxo,” Quimica Nova, vol. 33, no. 5, pp. 1088–1092, 2010. View at Google Scholar
  19. G. Lunn, HPLC-Methods for Pharmaceutical Analysis, Vol. 1, John Wiley & Sons, New York, NY, USA, 2000.
  20. P. Atkins and L. Jones, “Principios de Química: Questionando a vida e o meio ambiente, traduction for Bookman,” Porto Alegre, pp. 654, 2001.