Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2011, Article ID 286458, 7 pages
http://dx.doi.org/10.4061/2011/286458
Research Article

Fabrication of Hybrid Diamond and Transparent Conducting Metal Oxide Electrode for Spectroelectrochemistry

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK

Received 10 February 2011; Accepted 24 February 2011

Academic Editor: Bengi Uslu

Copyright © 2011 Jingping Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Kaim and A. Klein, Spectroelectrochemistry, RSC Publishing, Cambridge, UK, 2008.
  2. B. S. Pons, J. S. Mattson, L. O. Winstrom, and H. B. Mark, “Application of deposited thin metal films as optically transparent electrodes for internal reflection spectrometric observation of electrode solution interfaces,” Analytical Chemistry, vol. 39, no. 6, pp. 685–688, 1967. View at Google Scholar · View at Scopus
  3. A. Yildiz, P. T. Kissinger, and C. N. Reilley, “Evaluation of an improved thin-layer electrode,” Analytical Chemistry, vol. 40, no. 7, pp. 1018–1028, 1968. View at Google Scholar · View at Scopus
  4. H. B. Mark and B. S. Pons, “An in situ spectrophotometric method for observing the infrared spectra of species at the electrode surface during electrolysis,” Analytical Chemistry, vol. 38, no. 1, pp. 119–121, 1966. View at Google Scholar · View at Scopus
  5. R. W. Murray, W. R. Heineman, and G. W. O'Dom, “An optically transparent thin layer electrochemical cell,” Analytical Chemistry, vol. 39, no. 13, pp. 1666–1668, 1967. View at Google Scholar · View at Scopus
  6. R. G. Compton, J. S. Foord, and F. Marken, “Electroanalysis at diamond-like and doped-diamond electrodes,” Electroanalysis, vol. 15, no. 17, pp. 1349–1363, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Zak, J. E. Butler, and G. M. Swain, “Diamond optically transparent electrodes: demonstration of concept with ferri/ferrocyanide and methyl viologen,” Analytical Chemistry, vol. 73, no. 5, pp. 908–914, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Haymond, J. K. Zak, Y. Show, J. E. Butler, G. T. Babcock, and G. M. Swain, “Spectroelectrochemical responsiveness of a freestanding, boron-doped diamond, optically transparent electrode toward ferrocene,” Analytica Chimica Acta, vol. 500, no. 1-2, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Stotter, J. Zak, Z. Behler, Y. Show, and G. M. Swain, “Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz,” Analytical Chemistry, vol. 74, no. 23, pp. 5924–5930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. R. Zhang, Y. Kato, S. Yoshihara, and T. Watanabe, “A novel boron-doped diamond (BDD)-coated platinum mesh electrode for spectroelectrochemistry,” Journal of Electroanalytical Chemistry, vol. 603, no. 1, pp. 135–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Haacke, “New figure of merit for transparent conductors,” Journal of Applied Physics, vol. 47, no. 9, pp. 4086–4089, 1976. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Zhu, C. H. A. Huan, K. Zhang, and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films, vol. 359, no. 2, pp. 244–250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Alam and D. C. Cameron, “Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol-gel process,” Journal of Vacuum Science and Technology a-Vacuum Surfaces and Films, vol. 19, no. 4, pp. 1642–1646, 2001. View at Google Scholar
  14. G. K. Paul and S. K. Sen, “Sol-gel preparation, characterization and studies on electrical and thermoelectrical properties of gallium doped zinc oxide films,” Materials Letters, vol. 57, no. 3, pp. 742–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Avigal and A. Hoffman, “A new method for nucleation enhancement of diamond,” Diamond and Related Materials, vol. 8, no. 2–5, pp. 127–131, 1999. View at Google Scholar · View at Scopus
  16. L. Raniero, A. Gonçalves, A. Pimentel et al., “Influence of hydrogen plasma on electrical and optical properties of transparent conductive oxides,” in Proceedings of the Materials Research Society Symposium, vol. 862, p. A21.10, April 2005. View at Scopus
  17. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Applied Physics Letters, vol. 49, no. 7, pp. 394–396, 1986. View at Publisher · View at Google Scholar · View at Scopus
  18. B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, and A. K. Omaev, “Thermally stable, highly conductive, and transparent ZnO layers prepared in situ by chemical vapor deposition,” Materials Science and Engineering B, vol. 65, no. 3, pp. 159–163, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bulletin, vol. 25, no. 8, pp. 52–57, 2000. View at Google Scholar · View at Scopus
  20. J. Cho, KI. H. Yoon, M. S. Oh, and W. K. Choi, “Effects of H annealing treatment on photoluminescence and structure of ZnO:Al/AlO grown by radio-frequency magnetron sputtering,” Journal of the Electrochemical Society, vol. 150, no. 10, pp. H225–H228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition,” Materials Science and Engineering B, vol. 103, no. 1, pp. 9–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. P. Eischens, W. A. Pliskin, and M. J. D. Low, “The infrared spectrum of hydrogen chemisorbed on zinc oxide,” Journal of Catalysis, vol. 1, no. 2, pp. 180–191, 1962. View at Google Scholar · View at Scopus
  23. N. Wada, P. J. Gaczi, and S. A. Solin, “"Diamond-like" 3-fold coordinated amorphous carbon,” Journal of Non-Crystalline Solids, vol. 35-36, no. 1, pp. 543–548, 1980. View at Google Scholar · View at Scopus
  24. S. Michaelson, R. Akhvlediani, and A. Hoffman, “Preparation and properties of sub-micron thick and free-standing diamond membranes,” Diamond and Related Materials, vol. 11, no. 3–6, pp. 721–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Schwarz, W. Oelßner, H. Kaden, F. Schumer, and H. Hennig, “Voltammetric and spectroelectrochemical studies on 4-aminophenol at gold electrodes in aqueous and organic media,” Electrochimica Acta, vol. 48, no. 17, pp. 2479–2486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Goto, M. Kato, and D. Ishii, “Semidifferential electroanalysis with a solid working electrode,” Analytica Chimica Acta, vol. 126, no. C, pp. 95–104, 1981. View at Google Scholar · View at Scopus
  27. M. Jamal, A. S. Sarac, and E. Magner, “Conductive copolymer-modified carbon fibre microelectrodes: electrode characterisation and electrochemical detection of p-aminophenol,” Sensors and Actuators B, vol. 97, no. 1, pp. 59–66, 2004. View at Publisher · View at Google Scholar · View at Scopus